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STATISTICAL INFERENCE 

                                               BY  DR RAJIV SAKSENA  

                                        DEPARTMENT OF STATISTICS 

                                            UNIVERSITY OF LUCKNOW 

We know that statistical data is nothing but a random sample of observations drawn from a 

population described by a random variable whose probability distribution is unknown or partly 

unknown and we try to know about the properties of the population on the basis of knowledge of 

the properties of the sample. This inductive process of going from known sample to the unknown 

population is called ‘Statistical Inference ‘ 

Formally, let x be a random variable describing the population under investigation. Suppose X has 

þ.m.ƒ 𝑓𝑜(𝑥) = 𝑃(𝑥 = 𝑥) or þ d ƒ 𝑓𝑜(𝑥) which depend on some unknown parameter 𝜃 (single or vector 

valued) that may have any value in a set Ω (called the parameters space). We assume that the 

functional form of 𝑓𝑜(𝑥)  is known but not the parameter 𝜃(except that 𝜃 ∈ Ω). For example, the 

family of distributions {𝑓𝜃(𝑥), 𝜃 ∈  Ω} may be the family of Poisson distribution {𝑃(𝜆), 𝜆 ≥ 0} or 

normal distribution {𝑁(𝜇, 𝜎2),−∞ <𝜇 < ∞, 𝜎 ≥ 0} 

Two problem of statistical inference are- 

1. To estimate the value of 𝜃 − problem of estimation 

2. To test a hypothesis about 𝜃 - problem of testing of the hypothesis 

                                                                            POINT ESTIMATION 

Definition: A random sample of size ‘n’ from the distribution of X is a set of independent and 

identically distributed random variables {𝑥1, 𝑥2, … , 𝑥𝑛} each of which has the same distribution as 

that of X. The probability of the sample is given by 

𝑓𝑜(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑓𝑜(𝑥1)𝑓𝑜(𝑥2)…𝑓𝑜(𝑥𝑛) 

Definition:   A statistic T = T (x1,x2,…, xn) is any function of the sample  values, which  does  not  

depend  on  the unknown parameter 𝜃. Evidently, T is a random variable which has its own 

probability distribution (called the ‘ Sampling distribution’ of T) 

For example, 𝑥̅ =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖 ;  𝑠2 =

1

𝑛−1
∑ (𝑥𝑖 − 𝑥̅)

2𝑛
𝑖  𝑋(1) = min(𝑥1, 𝑥2,…𝑥𝑛) , 𝑋(𝑛) = 𝑚𝑎𝑥(𝑥1, 𝑥2,…𝑥𝑛) are 

some statistics. 

If  we use  the statistic  T to  estimate  the unknown parameter 𝜃, it  is called  the estimator (or point  

estimators) of  𝜃  and  the value of T obtained  from a given  sample is  its ‘estimate’ 

Remark: Obviously, for T to be a good estimator of 𝜃 , the difference [𝑇 − 𝜃] should be as small as 

possible. However, since T is itself a random variable all that we can hope for is that it is close to 𝜃  

with high probability. 



2 
 

 
 

Theorem : Let (X1, X2,…,Xn) be a random sample of ‘n’  observations on X with mean 𝐸(𝑋) = 𝜇  and 

variance 𝑉𝑎𝑟(𝑥) = 𝜎2 Let the sample mean and sample variance be 𝑥̅ =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖  and 𝑠2 =

1

𝑛
∑(𝑥𝑖 − 𝑥)

2  

 

Then, 

(I)E(𝑋)̅̅ ̅=𝜇 

(ii)𝑉(𝑋)̅̅ ̅=
𝜎2

𝑛
 

(iii)E(𝑆2) =
𝑛−1

𝑛
𝜎2 

Prof: We have 

𝐸(𝑋)̅̅ ̅ = 𝐸 (
1

𝑛
∑𝑥𝑖

𝑛

𝑖

) =
1

𝑛
∑𝐸(𝑥𝑖) = 𝜇

𝑛

𝑖

 

𝑉(𝑋)̅̅ ̅ = 𝑉 (
1

𝑛
∑𝑥𝑖

𝑛

𝑖

) =
1

n2
∑V

n

i

(𝑥𝑖) =
𝜎2

𝑛
 

𝐸(𝑛𝑠2) = 𝐸∑(

𝑛

𝑖

𝑥𝑖 − 𝑥̅)
2 

= 𝐸∑[[(𝑥𝑖 − 𝜇) − (𝑥̅ − 𝜇)]
2]

𝑛

1

 

= 𝐸 [∑(𝑥𝑖 − 𝜇)
2 − 𝑛(𝑥̅

𝑛

𝑖

− 𝜇)2] 

= 𝐸(𝑥𝑖 − 𝜇)
2 − 𝑛𝐸(𝑥̅ − 𝜇)2 

= 𝑛𝜎2 − 𝑛𝜎2/𝑛 

= (𝑛 − 1)𝜎2 

𝐸(𝑠2) =
𝑛 − 1

𝑛
𝜎2 

PROPERTIES OF ESTIMATORS 

UNBIASEDNESS:   

An estimator T of an unknown parameter 𝜃 is called unbiased if 

𝐸(𝑇) = 𝜃 for all 𝜃 ∈ Ω 
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𝐸𝑥𝑎𝑚𝑝𝑙𝑒.  If (𝑥1, 𝑥2,… , 𝑥𝑛) is a random sample from any population with mean 𝜇  and variance 𝜎2, 

the sample mean 𝑥̅ is an unbiased   estimator of  𝜇 but the sample variance 𝑆2 is not an unbiased  

estimator of 𝜎2. 

However,  
𝑛𝑠2

𝑛−1
=

1

𝑛−1
∑ (𝑥𝑖 − 𝑥̅)

2𝑛
𝑖   is an unbiased estimator of 𝜎2. 

𝐸𝑥. if (𝑥1, 𝑥2,…𝑥𝑛) is a random sample from 𝑎 normal  distribution  𝑁(𝜇, 𝐼) show that  𝑇 =

1

𝑛
∑ 𝑥𝑖

2 − 1𝑛
𝑖  is an unbiased estimator of 𝜇2 , 

Soln.  𝐸(𝑇) = 𝐸 [
1

𝑛
∑ 𝑥𝑖

2 − 1𝑛
𝑖 ] =

1

𝑛
∑ 𝐸(𝑥𝑖

2) − 1𝑛
𝑖  

E(xi2)= V(x)+E(xi)= (𝜇2 + 1) 

=
1

𝑛
∑(𝜇2 + 1) − 1 = 𝜇2
𝑛

1

 

𝑬𝒙𝒂𝒎𝒑𝒍𝒆:  Let (𝑥1, 𝑥2,…𝑥𝑛) be a random sample of observation from a Bernoulli distribution 

ƒ
𝜃
(𝑥) = 𝜃𝑥(1 − 𝜃)1−𝑥(𝑥 = 0,1) show that  𝑇 =

𝑦(𝑦−1)

𝑛(𝑛−1)
 is an unbiased estimator of 𝜃 where 𝑦 = ∑ 𝑥𝑖

𝑛
𝑖  

Soln: We know that  𝐸(𝑥𝑖) = 𝜃 and 𝑉(𝑥𝑖) = 𝜃(1 − 𝜃) so that  𝐸(𝑌) = 𝑛 𝜃 and 𝑉(𝑌) = 𝑛𝜃(1 − 𝜃) 

Now 

𝐸(𝑌(𝑌 − 1) = 𝐸(𝑌2) − 𝐸(𝑌) 

= 𝑉(𝑌) + [𝐸(𝑌)]2 − 𝐸(𝑌) 

= 𝑛𝜃(1 − 𝜃) + 𝑛2𝜃2 − 𝑛𝜃 

= 𝑛(𝑛 − 1)𝜃2 

E(T)=𝐸 [
𝑌(𝑌−1)

𝑛(𝑛−1)
] = 𝜃2 

Showing it to be an unbiased estimator of 𝜃2 

Example: Show that the mean 𝑥̅ of a random sample of size 𝑛 from the exponential distribution 

ƒ
𝜃
(𝑥) =

1

𝜃
𝑒̅
𝑥

𝜃
(𝑥 > 0) is an unbiased estimator of 𝜃 and has variance 𝜃2/𝑛 

Soln: We know that 

𝐸(𝑥𝑖) = 𝜃 and 𝑉(𝑥𝑖) = 𝜃
2 (𝑖 = 1, . . , 𝑛) 

𝐸(𝑋)̅̅ ̅= 𝜃 and 𝑉(𝑋)̅̅ ̅ = 𝜃2/𝑛 

Example: Let (𝑥1, 𝑥2,…𝑥𝑛) to a random sample from  a normal distribution with mean 0 and 

variance 𝜃 (0< 𝜃 < ∞) so that 𝑇 = ∑𝑥𝑖
2/𝑛 is an unbiased estimator of 𝜃 and has variance 2𝜃2/n 
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Sohm we know that 

𝐸(𝑥𝑖) = 0, 𝐸(𝑥𝑖
2) = 𝑉(𝑥𝑖) = 𝜃 

𝐸(𝑇) =
1

𝑛
∑𝐸(𝑥𝑖

2) = 𝜃

𝑛

𝑖

 

Also                                                                     𝐸(𝑥𝑖
4) = 𝜇4 = 3𝜃

2  

 

𝑉(𝑇) = 𝑉(
1

𝑛
∑𝑥𝑖

2

𝑛

𝑖

) 

=
1

𝑛2
∑𝑉(𝑥𝑖

2)

𝑛

𝑖

 

=
1

𝑛2
∑[𝐸(𝑥𝑖

4) − {𝐸(𝑥𝑖
2)}2]

𝑛

𝑖

 

=
1

𝑛2
∑[3𝜃2 − 𝜃2]

𝑛

𝑖

 

=
2𝜃2

𝑛
 

Example Let (𝑥1 , 𝑥2,…𝑥𝑛)  be  a random sample from the rectangular distribution 𝑅(0, 𝜃) having 

þ, 𝑑, 𝑓                         𝑓𝜃(𝑥) = {
1

𝜃
0     ,otherwise 

, 𝑜 ≤ 𝑥 ≤ 𝜃 (𝜃 > 𝑜) 

Show that 𝑇1 = 2𝑥,̅ 𝑇2 =
𝑛+1

𝑛
𝑌𝑛  and 𝑇3 = (𝑛 + 1)𝛾𝑖  are all unbiased for  𝜃 , where 𝑌1 =

min(𝑥1, 𝑥2,…𝑥𝑛) and 𝑌𝑛 = max (𝑥1, 𝑥2,…𝑥𝑛) 

Soln: We know that 

𝐸(𝑥) = 𝜃/2 and 𝑉(𝑥) = 𝜃2/12 

𝐸(𝑇𝐼) = 𝐸 2 (
∑ 𝑥𝑖
𝑛
𝑖

𝑛
) = 𝜃 𝑎𝑛𝑑 𝑉(𝑇𝐼) =

𝜃2

3𝑛
 

To obtain the expectation of T2 and T3 we need to obtain their distribution. 

The 𝑑. 𝑓. of Yn is- 

𝐹𝓎(𝓎) = 𝑃(𝑌𝑛 ≤ 𝓎) 

= 𝑃(max (𝑥1, 𝑥2,…𝑥𝑛) ≤ 𝓎) 

= 𝑃(𝑥𝑖 ⪕ 𝓎, 𝑥𝑛 ⪕ 𝓎) 
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= [𝑃(𝑥 ⪕ 𝓎)]𝑛 

= (
𝓎

𝜃
) =

𝓎𝑛

𝜃𝑛
 

þ, 𝑑, 𝑓 𝑜𝑓  𝑌𝑛 is-                         ℊ𝑌𝑛(𝓎) = {
𝑛𝓎𝑛−𝑖,0⪕𝓎⪕𝜃

𝜃𝑛

0   ,𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 

 

Hence,                                           𝐸(𝑌𝑛) = ∫
𝑛𝓎𝑛

𝜃𝑛
𝜃

0
𝓎 = (

𝑛

𝑛+1
)𝜃 

Or                                                                 𝐸 (
𝑛+1

𝑛
𝑌𝑛) = 𝜃 

So that T2 is unbiased for 𝜃 

[We can check that V (T2) =
𝜃2

𝑛(𝑛+2)
] 

Again, the 𝑑. 𝑓. of Yi is- 

𝐹𝑌𝑖(𝓎) = 𝑃{𝑌𝑖 ≤ 𝓎} 

= P{min (𝑥1, 𝑥2,…𝑥𝑛) ≤ 𝓎} 

= 𝐼 − 𝑃{𝑥1 > 𝑦, 𝑥2 > 𝑦,…𝑥𝑛 > 𝑦} 

= 𝐼 − [𝐼 − 𝑃(𝑋 < 𝓎)]𝑛  

= 𝐼 − [𝐼 −
𝓎

𝜃
] 

þ, 𝑑, 𝑓 of 𝑌𝑖is 

ℊ𝑌𝑖(𝓎) = {
𝑛(𝜃 − 𝓎)𝑛−1 , 0 ⪕ 𝓎 ⪕ 𝜃

𝜃𝑛

0,        𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

Hence,                                                𝐸(𝑌𝑖) = ∫
𝑛𝓎(𝜃−𝓎)𝑛−1

𝜃𝑛
𝑑

𝜃

𝑂
𝓎 

=
𝑛

𝜃𝑛
{−𝓎

(𝜃 − 𝓎)𝑛

𝑛
⌊𝜃
𝑜
+
1

𝑛
∫ (
𝜃

0

𝜃 − 𝓎)𝑛𝑑𝓎 

=
𝑛

𝜃𝑛
[[
−1

𝑛

(𝜃 − 𝓎)𝑛+1

𝑛 + 1
] 𝜃
𝑜

 

=
𝜃

𝑛 + 1
 

So that                                                         𝐸(𝑇3) = 𝐸[(𝑛 + 1)𝑌1] = 𝜃 
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[
𝑤𝑒 𝑐𝑎𝑛 𝑐ℎ𝑒𝑐𝑘 𝑡ℎ𝑎𝑡 𝑉(𝑇3) =

𝑛

𝑛 + 2
𝜃2

𝑠𝑜 𝑡ℎ𝑎𝑡 𝑉(𝑇2) < 𝑉(𝑇1) < 𝑉(𝑇3)
] 

Example: Let ((𝑥1, 𝑥2,…𝑥𝑛) be a random variable from the Rectangular distribution 𝑅(𝜃, 2𝜃) having 

þ, 𝑑, 𝑓 

𝑓(𝑥, 𝜃) = {
1

𝜃
0 , 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

, 𝜃 ≤ 𝑥 ≤ 2𝜃 

Show that                                                 𝑇𝐼 =
𝑛+1

2𝑛+1
𝑥(𝑛), 𝑇2 =

𝑛+1

𝑛+2
𝑥(1) 

And                                               𝑇3 =
𝑛+1

5𝑛+4
[2𝑥(𝑛) + 𝑥(1)]𝑎𝑛𝑑 𝑇4 =

2

3
𝑥̅ are all unbiased 

Soln: We can show that the distribution ƪ𝑥(𝑛)𝑑𝑥(𝑖) have þ, 𝑑, 𝑓 given by 

𝑓𝑥(𝑛)(𝓎) =
𝑛(𝓎 − 𝜃)𝑛−1

𝜃𝑛
= 𝜃 ≤ 𝓎 ≤ 2𝜃

𝑓𝑥(1)(𝓎) =
𝑛(2𝜃 − 𝓎)𝑛−1

𝜃𝑛
𝜃 ≤ 𝓎 ≤ 2𝜃

 

Example: Let 𝑦1, 𝑦2, 𝑦3 be the order statistics of a random sample of size 3 from 𝑎 uniform 

distribution having þ, 𝑑, 𝑓 𝑓(𝑥, 𝜃) =
1

𝜃
(0 ≤ 𝑥 ≤ 𝜃) show that 4𝑦1, 2𝑦2 , 

4

3
𝑦3 are all unbiased estimator 

of 𝜃. Also obtain their variance. 

Soln: We can show that 𝑌1, 𝑌2 , 𝑌3 have þ, 𝑑, 𝑓 

𝑓𝑦1(𝓎) =
3(𝜃 − 𝓎)

𝜃3
= 𝑜 ≤ 𝓎 ≤ 𝜃

𝑓𝑦2(𝓎) =
6𝓎(𝜃 − 𝓎)

𝜃3
= 𝑜 ≤ 𝓎 ≤ 𝜃

𝑓𝑦3(𝓎) =
3𝓎2

𝜃3
= 𝑜 ≤ 𝓎 ≤ 𝜃

 

𝐸(𝑦1) = 𝜃/4, 𝐸(𝑦2) = 𝜃/2 ,𝐸(𝑋3) =
3
4𝜃⁄  

𝑉(𝑦1) = 3𝜃
2/80, 𝑉(𝑦2) = 𝜃

2/20, 𝑉(𝑦3) = 3𝜃
3/80 

*If 𝑦1, 𝑦2,… , 𝑦𝑛 are two unbiased estimator with variance 𝜎1
2, 𝜎2

2 and correlation coeff. P between  

than  the linear  combination  which  is  unbiased  and  has  minimum  variance  is. 

𝑌 =
(𝜎2

2 − 𝑃𝜎1𝜎2)𝑌𝐼 + (𝜎1
2 −𝜑𝜎1𝜎2)𝑌2

𝜎1
2 + 𝜎2

2 − 2𝜑𝜎1𝜎2
 

*If 𝑦1, 𝑦2,… , 𝑦𝑛 are ind  ept unbiased estimators if 𝜃 with variance 𝜎𝑖
2(𝑖 = 1,2. . 𝑛),  the linear 

combination with minimum variance is 

𝑌 = 𝓀1𝑦1 +𝓀2𝓀2 ++𝓀𝑛𝓀𝑛 

Where 
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𝓀𝑖 =
1

𝜎𝑖
2 /∑ (𝑖𝑛

𝑖 /𝜎𝑖
2) 

𝑖. 𝑒       𝑦 =

𝐼

𝜎1
2𝑦1+

𝐼

𝜎2
2𝑦2+⋯+

𝐼

𝜎𝑛
2𝑦𝑛

𝐼

𝜎1
2+

𝐼

𝜎2
2+⋯+

𝐼

𝜎𝑛
2

 

Example Let ‘T’ be an unbiased estimator of 𝜃. Does it imply that 𝑇2 and√𝑇 , are unbiased for 

𝜃2𝑎𝑛𝑑 √𝜃) respectively? 

Soln :                                                         V(T) = E(T2) − [E(T)]2 

If 𝐸(𝑇2) = 𝜃2, then 𝑉(𝑇) = 𝑂 so that 𝑃 (𝑇 = 𝜃) = 1 which is impossible since T has to be of 

independent of 𝜃. 

Also,                                                            𝑉(√𝑇) = 𝐸(𝑇) − (𝐸√𝑇)2 

If 𝐸(√𝑇) = √𝜃 , then  𝑉(√𝑇) = 𝑜 so that 𝑃(√𝑇) = √𝜃) = 1 = 𝑃(𝑇 = 𝜃) which is impossible. 

Example let 𝑦1, 𝑦2, be independent unbiased estimator of 𝜃, having finite variance (𝜎1
2, 𝜎2

2, 𝑠𝑎𝑦). 

Obtain a linear combination of 𝑦1, 𝑦2 which is unbiased and has the smallest variance. 

Sohn Let 𝑌 = 𝓀𝑦1 +𝓀′𝑦2 

Evidently, 𝓀 +𝓀′ = 1 or 𝓀′ = 1 − 𝓀 

Then 𝑉(𝑌) = 𝑉[𝓀𝑦𝑖 + (1 − 𝓀)𝑦2] 

= 𝓀2𝜎1
2 + (𝐼 − 𝓀)2𝜎2

2 

Minimising  𝑉(𝑌) 𝑤. 𝑟. 𝑡. 𝓀,  we get 

 

Or                                                             2𝓀𝜎1
2 − 2(1 − 𝓀)𝜎2

2 = 0 

 

𝓀 = 𝜎2
2/(𝜎1

2 + 𝜎2
2) 

The linear combination with minimum variance is 

𝑌 = (
𝜎2
2

𝜎1
2 + 𝜎2

2)𝑦1 +
𝜎1
2

(𝜎1
2 + 𝜎2

2)
𝑦2 =

1
𝜎1
2 𝑌1 +

1
𝜎2
2 𝑌2

1
𝜎1
2 +

1
𝜎2
2

 

Note : if 𝜎1
2 = 2𝜎2

2 then 𝓀=1/3 

Remarks: (𝑖) An unbiased estimator may not exist. Let x be a random variable with Bernoulli  

distribution. 

𝑓𝜃(𝑥) = 𝜃
𝑥(1 − 𝜃)1−𝑥 , 𝑥 = 0,1 
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It can be shown that no unbiased estimator exists for 𝜃2. 

(𝑖𝑖) Unbiased estimator may be assured. 

Let X be a random variable having Poisson distribution 𝑃(𝑥) and suppose we want estimator 𝓰(𝜆) 

=ℯ3𝜆. Consider a sample of one observation and the estimator T= . Then E(T)= ℯ−3𝜆 so that T is an 

unbiased estimator  of ℯ−3𝜆  but T(x)= (-2) X  for x even and T(x) < 0 for 𝑥 odd, which  is absurd since  

ℯ−3𝜆 is  always positive. 

(𝑖𝑖𝑖) Instead of the parameter 𝜃 we may  be interested  in estimating a function 𝓰(𝜃). 𝓰(𝜃) is said to  

be ‘estimable’  if there exists an estimator T Such  that E(T)= 𝓰(𝜃), 𝜃 ∈ 𝛺. 

Minimum Variance Unbiased (MVU) estimators :  The  class of unbiased estimators may, in 

general, be quite large and we would  like  to choose  the  best  estimator from  this  class. Among  

two  estimators  of 𝜃 which  are  both  unbiased , we would  choose the  one  with  smaller variance. 

The reason  for doing this rests  on the  interpretation of variance as a measure of concentration 

about the mean. Thus, if T is unbiased for 𝜃, then by Chebyshev’s inequality- 

𝑃{[𝑇 − 𝜃] ≤ 𝜀} > 1 −
𝑉𝑎𝑟(𝑇)

𝜀2
 

Therefore, the smaller 𝑉𝑎𝑟(𝑇) is, the larger the lower bound of the probability of concentration  of T 

about 𝜃 becomes. Consequently, within the restricted class of unbiased estimators we would choose 

the estimator with the smallest variance. 

Definition:  An estimator T =T (X1,…, Xn) is said to be a uniformly minimum variance unbiased 

(UMVU) estimator of 𝜃 (or an estimator for 𝓰(𝜃) if it is  unbiased  and has  the smallest  variance  

within  the  class of unbiased  estimators  of 𝜃  (or 𝓰(𝜃),)  of all 𝜃 ∈  𝛺. That is if T is any other 

unbiased estimator of 𝜃, then- 

                                                                   𝑉𝑎𝑟(𝑇) ≤ 𝑉𝑎𝑟(𝑇′)𝑓𝑜𝑟 all 𝜃 ∈ 𝛺 

Suppose we decide to restrict ourselves to the class of all unbiased estimators with finite variance. 

The problem arises as to how we find an UMVU estimator, if such an estimator exists. For this we 

would first determine a lower bound  for  the  variances  of all estimators (in the class of unbiased  

estimators under consideration) and then  would  try to  determine an unbiased estimator whose 

variance  is equal to this lower bound. The lower bound for the variances will be given by the 

Cramer-Rao inequality for which we assume the following regularity conditions: 

Let X be a random variable with þ. 𝑑. 𝑓 𝑓(𝑥; 𝜃) 𝜃 ∈ 𝛺 

(𝑖) 𝛺 is an open interval (finite or not ) 

(𝑖𝑖)𝑓(𝑥; 𝜃) is positive  on a set S independent of 𝜃. 

(𝑖𝑖𝑖) 
𝜕

𝜕𝜃
𝑓(𝑥; 𝜃) exists for all  𝜃 ∈ 𝛺 
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(𝑖𝑣) ∫ ∫ 𝑓(𝑥1,
∞

−∞

∞

−∞
𝜃)𝑓(𝑥2, 𝜃)…𝑓(𝑥𝑛, 𝜃)𝑑𝑥1, 𝑥2,…..𝑑𝑥𝑛 

May be differentiated under the integral sign. 

(𝑣)∫ ∫ 𝑇
∞

−∞

∞

−∞

(𝑥1, 𝑥2,…𝑥𝑛)𝑓(𝑥1; 𝜃)…𝑓(𝑥𝑛; 𝜃)𝑑𝑥1, 𝑥2,…..𝑑𝑥𝑛 

May be differentiated under the integral sign where T(X1, Xn) is any unbiased  estimator of 𝜃 

Cramer-Rao inequality: Let (X1,…, Xn) be a random sample of n observations on X with  

þ. 𝑑. 𝑓 𝑓(𝑥; 𝜃)  and suppose the above regularity conditions hold. If T is any unbiased estimator of 𝜃, 

then- 

𝑉𝑎𝑟(𝑇) ≤
1

𝑛𝐸 [
𝜕
𝜕𝜃 𝑙𝑜𝑔 𝑓

(𝑥; 𝜃)]
2 

Proof: We have 

∫ 𝑓(𝑥𝑖;
∞

−∞

𝜃) 𝑑𝑥𝑖 = 1 ;  𝑖 = 1,2. . 𝑛 

Which gives, on differentiating.𝑤. 𝑟. 𝑡 𝜃 

∫
𝜕

𝜕𝜃
𝑓(𝑥𝑖 ,

∞

−∞

𝜃) 𝑑𝑥𝑖 = 0 

Or                                                 ∫ [
𝜕

𝜕𝜃
𝑙𝑜𝑔 𝑓(𝑥𝑖; 𝜃)] 𝑓(𝑥𝑖;

∞

−∞
𝜃)𝑑𝑥𝑖 = 0…… . . (𝐴) 

Or                                                         𝐸 [
𝜕

𝜕𝜃
𝑙𝑜𝑔𝑓(𝑥𝑖; 𝜃)] = 0…… . . (1) 

Also, since T is unbiased estimator of 𝜃,𝑤𝑒 ℎ𝑎𝑣𝑒 

𝐸(𝑇) = ∫ ∫ 𝑇(𝑥1, . 𝑥𝑛)𝑓

∞

−∞

∞

−∞

(𝑥𝑖 , 𝜃). . 𝑓(𝑥𝑛, 𝜃)𝑑𝑥𝑖 …𝑑𝑥𝑛 = 𝜃 

Which given on differentiation  𝑤. 𝑟. 𝑡. 𝜃 

𝐸(𝑇) = ∫ ∫ 𝑇(𝑥1, . 𝑥𝑛)
𝜕

𝜕𝜃
[∏𝑓(𝑥𝑖 , 𝜃)

𝑛

𝑖=1

]

∞

∞

𝑑𝑥𝑖 …𝑑𝑥𝑛

∞

−∞−

= 1……(2) 

But 

𝜕

𝜕𝜃
∏𝑓(𝑥𝑖; 𝜃)

𝑛

𝑖=1

=∑[
𝜕

𝜕𝜃
𝑓(𝑥𝑖; 𝜃)∏𝑓(𝑥𝑖; 𝜃)

𝑖=𝑖

]

𝑛

𝑖=𝑖

 

=∑[
1

𝑓(𝑥𝑖; 𝜃)

𝜕

𝜕𝜃
𝑓(𝑥𝑖; 𝜃)∏𝑓(𝑥𝑖; 𝜃)

𝑛

𝐼=𝑖

]

𝑛

𝑖=𝑖
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= [∑
𝜕

𝜕𝜃
𝑙𝑜𝑔𝑓(𝑥𝑖; 𝜃)

𝑛

𝑖=1

]∏𝑓(𝑥𝑖; 𝜃)

𝑛

𝐼=𝑖

 

So that (2) becomes 

∫ ∫ 𝑇(𝑥1, … 𝑥𝑛) [∑
𝜕

𝜕𝜃
𝑙𝑜𝑔𝑓(𝑥𝑖; 𝜃)

𝑛

𝑖=1

]

∞

−∞

∞

−∞

𝑓(𝑥1, 𝜃) …𝑓(𝑥𝑛, 𝜃)𝑑𝑥𝑖 …𝑑𝑥𝑛 = 1 

Or                                                                 E (TZ) =I                    ............... (3) 

Where 

𝑍 =∑
𝜕

𝜕𝜃
𝑙𝑜𝑔𝑓(𝑥𝑖; 𝜃)

𝑛

𝑖=1

 

From (1) we immediately get 

𝐸(𝑍) =∑𝐸 [
𝜕

𝜕𝜃
𝑙𝑜𝑔𝑓(𝑥𝑖; 𝜃)] = 0…… . . (4)

𝑛

𝑖=1

 

And   

𝑉𝑎𝑟(𝑧) =∑𝐸 [
𝜕

𝜕𝜃
𝑙𝑜𝑔𝑓(𝑥1;𝜃)]

2𝑛

𝑖=1

 

= 𝑛𝐸 [
𝜕

𝜕𝜃
log 𝑓(𝑥1; 𝜃)]

2

           … . . (5) 

Now,                   𝐶𝑜𝑣(𝑇𝑍) = 𝐸(𝑇𝑍) − 𝐸(𝑇)𝐸(𝑍) 

     =1 

(i)An unbiased estimator T whose variance equals the lower bound 
1

𝑛𝐸[
𝜕

𝜕𝜃
log 𝑓(𝑥,𝜃)]

2 

If and only if T is if the from 𝑇 = 𝜃 + 𝑏𝜃
𝑧 where 𝑧 = ∑

𝜕

𝜕𝜃
𝑙𝑜𝑔𝑓(𝑥, 𝜃)𝑛

𝑖=1  

Proof: 

𝑉(𝑇) =
1

𝑛𝐸 [
𝜕
𝜕𝜃 log 𝑓

(𝑥, 𝜃)]
2 

I𝓯𝓯  

                                                                                          𝑅(𝑇, 𝑍) = 1 

𝑖. 𝑒 ,  𝑖𝒻 T is a linear  𝒻unction of Z, say 

𝑇 = 𝑎𝜃 + 𝑏𝜃𝑧 



11 
 

 
 

But                                                                          𝐸(𝑇) = 𝑎𝜃 = 𝜃 

𝑖. 𝑒                                                                              T= 𝜃 + 𝑏𝜃𝑧 

Let  (𝑥1, . . 𝑥𝑛) be a random sample from R (0, 𝜃) 

𝑓(𝑥, 𝜃) =
1

𝜃
, 0 ≤ 𝑥 ≤ 𝜃 

𝜕

𝜕𝜃
𝑙𝑜𝑔𝑓(𝑥, 𝜃) =

1

𝜃
 

𝐸 [
𝜕

𝜕𝜃
log 𝑓(𝑥, 𝜃)]

2

=
1

𝜃2
 

                                                                                   CRB=
    𝜃2

  𝑛
 

We know that 𝑇 =
𝑛+1

𝑛
𝑋(𝑛) is UMVUE whose variance is- 

𝑉(𝑇) =
𝜃2

𝑛(𝑛 + 2)
<
𝜃2

𝑛
 

Therefore, we have                              𝑃(𝑇, 𝑍) =
𝐶𝑜𝑣(𝑇,𝑍)

𝑉(𝑇)𝑉(𝑍)
=

1

𝑉(𝑇)𝑉(𝑍)
 

Since 𝑃(𝑇, 𝑍) ≤ 1 we get 

𝑉(𝑇) ≥
1

𝑛𝐸 [
𝜕
𝜕𝜃 log 𝑓

(𝑥. 𝜃)]
2 

Remark:  (𝑖)  the left page 

(𝑖𝑖)  If 𝓰(𝜃)  is an  estimable  function  for  which  an  unbiased estimator is T (𝑖. 𝑒.  𝐸(𝑇) = ℊ(𝜃)) 

then C.R Inequality becomes- 

𝑉(𝑇) ≥
[ℊ(𝜃)]2

𝑛𝐸 [
𝜕
𝜕𝜃 log 𝑓

(𝑥. 𝜃)]
2 

(𝑖𝑖𝑖) It can be show that 

                                                                     𝐸 [
𝜕

𝜕𝜃
log 𝑓(𝑥; 𝜃)]

2
= −𝐸 [

𝜕2

𝜕𝜃2
log 𝑓(𝑥; 𝜃)] 

(𝑖𝑣) If an  unbiased  estimator exists  which  is such  that  its  variance is equal to the  lower  bound  

CRB=
1

𝑛𝐸[
𝜕

𝜕𝜃
log 𝑓(𝑥.𝜃)]

2   then it will be UMVUE. 

(𝑣)  If  there is no unbiased estimator  whose  variance  equals  the C R B it does  not  mean  that  

UMVUE will not  exist.  Such  estimators  can be  found  (if these  exists ) by other  methods. 
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(𝑣𝑖)  In case of distributions not satisfying the regularity conditions (e.g.: Rectangular distribution) 

UMVU estimators, if these exists can be found by other methods. For such cases UMVU estimator 

may have variance less than CRB.  

Example: Let (𝑥1, . . . 𝑥𝑛) be a random sample from a Bernoulli distribution 𝑓(𝑥; 𝜃) = 𝜃𝑥(1 −

𝜃)1−𝑥(𝑥 = 0,1), 0 < 𝜃 < 1    

Show that 𝑥̅ =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖  is a UMVU of 𝜃 

Sohn :                                                          log 𝑓(𝑥; 𝜃) = 𝑥𝑙𝑜𝑔𝜃 + (1 − 𝑥) log(1 − 𝜃) 

𝜕

𝜕𝜃
𝑙𝑜𝑔𝑓(𝑥, 𝜃) =

𝑥

𝜃
−
1 − 𝑥

1 − 𝜃
 

=
𝑥 − 𝜃

𝜃(1 − 𝜃)
 

So that  

𝐸 [
𝜕

𝜕𝜃
log 𝑓(𝑥. 𝜃)]

2

=
𝐸(𝑥 − 𝜃)2

𝜃2(1 − 𝜃)2
 

                                                                                                         =
𝜃(1−𝜃)

𝜃2(1−𝜃)2
 

                                                                                  =
1

𝜃(1−𝜃)
 

 

By CR inequality we have C R B = 
𝜃(1−𝜃)

𝑛
  

Now, 𝐸(𝑥̅) = 𝜃 and 𝑉𝑎𝑟 (𝑥̅) =
𝜃(1−𝜃)

𝑛
  that is equal to C R B. Hence 𝑥̅ is UMVUE of 𝜃  

Example:  Let x be a random sample having Binomial distribution  

𝑓(𝑥, 𝜃) = (
𝑚
𝑥
)𝜃𝑥(1 − 𝜃)𝑚−𝑥;  𝑥 = 0,1, … ,𝑚(0 < 𝜃 < 1) 

Show that 𝑥̅ 𝑚⁄  is UMVUE of 𝜃. 

Soln:                                𝑙𝑜𝑔𝑓(𝑥, 𝜃) = 𝑙𝑜𝑔 (
𝑚
𝑥
) + 𝑥𝑙𝑜𝑔𝜃 + (𝑚 − 𝑥) log(1 −𝜃)  

𝜕

𝜕𝜃
𝑙𝑜𝑔𝑓(𝑥, 𝜃) =

𝑥

𝜃
+
𝑚 − 𝑥

1 − 𝜃
 

=
𝑥 −𝑚𝜃

𝜃(1 − 𝜃)
 

So that                                           𝐸 [
𝜕

𝜕𝜃
𝑙𝑜𝑔𝑓(𝑥, 𝜃)]

2
=

𝐸(𝑥−𝑚𝜃)2

𝜃2(1−𝜃)2
 

                                                                                                 =
𝑚𝜃(1−𝜃)

𝜃2(1−𝜃)2
 

                                                                                                 =
𝑚

𝜃(1−𝜃)
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For sample of one observation X let T=T(X) be an unbiased estimator. The C.R.B is 
𝜃(1−𝜃)

𝑚𝑛
. Now 

𝐸 (
𝑋̅

𝑚
) = 𝜃 and 𝑉𝑎𝑟 (

𝑥

𝑚
) =

𝜃(1−𝜃)

𝑚𝑛
  so that 

𝑋̅

𝑚
 is UMVUE of 𝜃 (see left page) 

Example: Let (x1,..., xn) be  a  random  sample  from  a Poisson  distribution  

𝑓(𝑥, 𝜃) =
𝑒−𝜃𝜃𝑥

𝑥
;      𝑥 = 𝑜, 1……(𝜃 > 𝑂) 

Show that 𝑥̅ is UMVUE of 𝜃. 

Soln:                                                       𝑙𝑜𝑔𝑓(𝑥, 𝜃) = −𝜃 + 𝑥𝑙𝑜𝑔𝜃 − 𝑙𝑜𝑔𝑥; 

𝜕

𝜕𝜃
𝑙𝑜𝑔𝑓(𝑥, 𝜃) = −𝐼 +

𝑥

𝜃
 

=
𝑥 − 𝜃

𝜃
 

𝐸 [
𝜕

𝜕𝜃
𝑙𝑜𝑔𝑓(𝑥, 𝜃)]

2

=
𝐸(𝑥, 𝜃)2

𝜃2
 

=
1

𝜃
 

The C.R.B = 𝜃 𝑛⁄  

Now 𝐸(𝑥̅) = 𝜃 and 𝑉𝑎𝑟(𝑥̅) =
𝜃

𝑛
 so that 𝑥̅ is UMVUE of 𝜃   

Example: Let (𝑥1, . . , 𝑥𝑛) be a random sample from a normal distribution 𝑁( 𝜃  , 𝜎2) where 
variance 𝜎 is known show that 𝑥̅ is UMVUE of 𝜃. 

Soln:                                                                   𝑓(𝑥, 𝜃) =
1

√2𝑥𝜎
𝑒−

(𝑥−𝜃)2

2𝜎2
 

log 𝑓(𝑥, 𝜃) = 𝑙𝑜𝑔(
1

√2𝑥𝜎
) −

(𝑥 − 𝜃)2

2𝜎2
 

Or                                                                     
𝜕

𝜕𝜃
𝑙𝑜𝑔𝑓(𝑥, 𝜃) =

(𝑥−𝜃)

𝜎2
 

𝐸 [
𝜕

𝜕𝜃
𝑙𝑜𝑔𝑓(𝑥, 𝜃)]

2

=
𝐸(𝑥 − 𝜃)2

𝜎4
 

=
1

𝜎2
 

The C.R.B= 𝜎
2

𝑛⁄  

Now 𝐸(𝑥̅) = 𝜃 and 𝑉(𝑥̅) = 𝜎
2

𝑛⁄  so that 𝑥̅ is UMVUE of 𝜃 

Example Let 𝑥1 , . . , 𝑥𝑛 be a random sample from a normal distribution 𝑁(𝜇, 𝜃) where 𝜇 is known 
and 𝜃  is that variance to be estimated. Show that  𝑠2 = ∑ (𝑥𝑖 − 𝜇)

2/𝑛𝑛
𝑖  is UMVUE of 𝜃 

Soln:                                     𝑓(𝑥; 𝜃) =  
1

√2𝜋𝜃
𝑒−

(𝑥−𝜇)2

2𝜃  

 

          𝑙𝑜𝑔 𝑓(𝑥; 𝜃) = 𝑙𝑜𝑔
1

√2𝑥
−
1

2
𝑙𝑜𝑔𝜃 −

(𝑥−𝜇)2

2𝜃
 

Or                                                     
𝝏

𝝏𝜽
log f(x, 𝜃) = −

1

2𝜃
+
(𝑥−𝜇)2

2𝜃2
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=
(𝑥 − 𝜇)2 − 𝜃

2𝜃2
 

𝐸 [
∂

∂θ
log 𝑓(𝑥, 𝜃)]

2

=
𝐸[(𝑥 − 𝜇)2 − 𝜃]2

4𝜃4
 

=
𝐸(𝑥 − 𝜇)4 − 2𝜃𝐸(𝑥 − 𝜇)2 + 𝜃2

4𝜃4
 

=
3𝜃2 − 2𝜃2 + 𝜃2

4𝜃4
 

=
1

2𝜃2
 

The C.R.B=  2𝜃
2

𝑛⁄  

 Consider the estimator 𝑆2 =
∑ (𝑥𝑖−𝜇)

2𝑛
𝑖

𝑛
  for which E(S2)= 𝜃 and V(S2)=

2𝜃2

𝑛
 so that S2 is UMVUE of 𝜃 

Example  An  UMVU  estimator  is  unique , in  the  sense  that if  TO and TI are both UMVU estimator  
then TO = TI  almost  surely (𝑖. 𝑒 𝑃(𝑇𝑂 ≠ 𝑇𝐼) = 0) 

Soln:   Since both 𝑇𝑂  and 𝑇𝐼  are unbiased  

                                                                   𝐸(𝑇𝑂) = 𝐸(𝑇𝐼) = 𝜃  for all 𝜃 𝜖 𝛺 

And since both are UMVUE, 

𝑉(𝑇𝑂) = 𝑉(𝑇𝐼)for all 𝜃 𝜖 𝛺 

 Consider the new estimator 

𝑇 =
1

2
(𝑇𝑂 + 𝑇𝐼) 

Which is also unbiased. Moreover, 

𝑉(𝑇) =
1

4
[𝑉(𝑇𝑂) + 𝑉(𝑇𝐼) + 2𝜌√𝑉(𝑇𝑂)𝑉(𝑇𝐼)] 

Where 𝜌 is the corr. Coefficient between   𝑇𝑂 𝑎𝑛𝑑 𝑇𝐼  

𝑉(𝑇) =
𝐼 + 𝜌

2
𝑉(𝑇𝑂) 

By definition, 𝑉(𝑇) ≥ 𝑉(𝑇𝑂). It follows that 𝜌 ≥ 𝐼. Therefore 𝜌 =I so that, for every 𝜃, 𝑇𝑂 and 𝑇𝐼  are 
linearly related, 𝑖. 𝑒.   

𝑇𝑂 = 𝑎 + 𝑏𝑇𝐼  

Where 𝑎, 𝑏 are amstants (may depend on 𝜃) and b≥ 0 .   𝑇aking expectation and variance we get 

𝜃 = 𝑎 + 𝑏𝜃
𝑉(𝑇0) = 𝑏

2𝑉(𝑇𝐼)
} 

Which imply that b=1 and 𝑎 = 0.  Therefore  

𝑇0 = 𝑇 

CONSISTENCY  

Definition: A sequence of estimator {𝑇𝑛}. 𝑛 = 1,2, … of a parameter 𝜃 is said to be consistent if, as 
n→∞  



15 
 

 
 

𝑇𝑛 → 𝑝 𝜃 for each  fixed   𝜃 𝜖 𝛺 that is , for  any 𝜖(> 0) 

𝑇𝑛 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠 𝑡𝑜  𝜃 𝑖𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 

Or 𝑃{|𝑇𝑛 − 𝜃| > 𝜖} → 0 

Or                                                                       𝑃{|𝑇𝑛 − 𝜃| ≤ 𝜖} → 1 

𝑎𝑠 𝑛 → ∞  

Remarks:  

(𝒊) For increase in sample size a consistent estimator will become more and more close to  𝜃 

(𝑖𝑖)Consistency is essentially a large sample property. We speak of the consistency of a sequence of 

estimators rather than that of one estimator.     

(iii) If {𝑇𝑛} is  a sequence  of estimator  which  is  consistent  for  𝜃 and {𝐶𝑛}, {𝑔𝑛} are  sequence of 

constants  such  that 𝐶𝑛 → 0 𝑔 → 1 as 𝑛 → ∞ then {𝑇𝑛 + 𝐶𝑛} 𝑎𝑛𝑑 {ℊ𝑛𝑇𝑛} are  sequences of consistent  

estimators also. 

(iv) We will show later that if {𝑇𝑛} is a sequence of estimators such that 𝐸(𝑇𝑛) → 𝜃 and 𝑉(𝑇𝑛) →

0 and 𝑛 → ∞ then {𝑇𝑛} is consistent. 

Examples: 

1. Let  (𝑥1, … 𝑥𝑛) be a random sample from any distribution with finite mean 𝜃. Then it follows 

from LLN that 𝑥̅ so that 𝑥 →̅̅ ̅̅ ̅ is consistent for 𝜃. If the distribution has finite variance 

(𝜎2, 𝑠𝑎𝑦) 𝑉(𝑥̅) = 𝜎
2

𝑛⁄ → 0 so that it follows from Remark (IV) that 𝑥̅ is consistent .it can be 

shown that the sample median is also consistent for 𝜃 

2. Suppose (𝑥1, … , 𝑥𝑛) is a random sample from 𝑁(𝜇, 𝜎2). 

 Let  

𝒙̅ =∑
𝒙𝒊
𝒏⁄

𝒏

𝟏

 

s2 =
1

n
∑(xi − x̅)

2

n

1

 

s2 =
1

(n − 1)
∑(xi − x̅)

2 =
n

n − 1

n

1

s2 

4    The  following   is  an  example  of an  estimator  which  is  unbiased   but  not  consistent  

Let  (𝑥1, … 𝑥𝑛)  be  a random sample from rectangular distribution. 𝑅(𝑂, 𝜃)  and let 𝑌𝑖 =

𝑚𝑖𝑛(𝑥1, … 𝑥𝑛) consider the  estimator 𝑇 = (𝑛 + 1)𝑌1. This is unbiased . Now for a any 𝐸(> 0),  

𝑝 {[𝑌1 −
𝜃

𝑛 + 1
] ≤

𝜀

𝑛 + 1
} 

=
𝑛

𝜃𝑛
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𝜃

𝑛 + 1
−

𝜖

𝑛 + 1
 

=
1

𝜃𝑛
[−𝜃 − 𝓎)𝑛]

𝜃

𝑛 + 1
+

𝜖

𝑛 + 1
𝜃

𝑛 + 1
−

𝜖

𝑛 + 1

 

=
1

𝜃𝑛
[
(𝑛𝜃 + 𝜖)𝑛 − (𝑛𝜃 + 𝜖)𝑛

(𝑛 + 1)𝑛
] 

=
𝑛𝑛

(𝑛 + 1)𝑛
[(1 +

𝜖

𝑛𝜃
)
𝑛

− (1 −
𝑒

𝑛𝜃
)
𝑛

] 

                                                                       (𝑒
𝜖

𝜃 − 𝑒−
𝜖

𝜃) 

                                                                            𝑛 → ∞  

Which is some fixed number 

𝑃{[𝑇 − 𝜃]𝜖} + 1 

Thus, T is not constant  

We can show that  

𝐸(𝑠2) =
𝑛 − 1

𝑛
𝜎2,   𝑉(𝑠2) =

2𝜎4(𝑛 − 1)

𝑛2
 

𝐸(𝑠′
2
) = 𝜎2,   𝑉(𝑠′

2
) =

2𝜎4

𝑛 − 1
 

By remark (iv) above 𝑠2 + 𝑠′
2

 are both constant for 𝜎2, 𝑠2 is biased and 𝑠′
2

 is unbiased. 

3. Let (𝑥1, … . . 𝑥𝑛) be for a random sample for gamma distribution  

f(x, 𝜃) =
1

𝜃þΓ(þ)
𝑒
𝑥
𝜃
𝑥þ−1(𝑥 ≥ 𝜃, 𝜃 > 0) þ 𝑘𝑛𝑜𝑤𝑛 

Show that 𝑋̅ þ⁄  is unbiased and consistent for 𝜃  

Soln:                                            𝐸(𝑋̅ þ⁄ ) = 𝜃, 𝑉(𝑋̅ þ⁄ ) =
𝜃2

𝑛þ
→ 0 

𝑋̅ þ⁄  is unbiased  and consistent  

Theorem:  If {𝑇𝑛}  is a sequence of estimators (of 𝜃)such that 

𝐸(𝑇𝑛) = 𝜃𝑛 → 𝜃 

And                                                                          𝑉(𝑇𝑛) → 0 

As n→∞ then {𝑇𝑛} is consistent estimator of 𝜃. 

Proof: By Chebyshev’s inequality, for any 𝜖(> 0)we have  

𝑃{|𝑇𝑛 − 𝜃| > 𝜖} ≤
𝐸(𝑇𝑛 − 𝜃)

2

𝜖2
 

=
1

𝜖2
𝐸[(𝑇𝑛 − 𝜃𝑛) + (𝜃𝑛 − 𝜃)]

2 

=
1

𝜖2
𝐸[(𝑇𝑛 − 𝜃𝑛)

2 + (𝜃𝑛 − 𝜃)
2 + 2(𝜃𝑛 − 𝜃)(𝑇𝑛 − 𝜃)] 
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                      =
1

𝑒2
[𝑉(𝑇𝑛) + (𝜃𝑛 − 𝜃)

2] →0 

As n→∞ by given condition of the theorem so that 𝑇𝑛 is consistent for 𝜃. 

Theorem:   If{𝑇𝑛} is a sequence of consistent estimators of 𝜃 and 𝓰(𝜃) is a continuous function of 𝜃, 

then {ℊ(Tn)} is consistent  for 𝓰(𝜃) 

Proof: Since Tn is consistent for 𝜃, for any 𝜖1(> 𝑜) 

𝑃{|𝑇𝑛 − 𝜃| ≤ 𝜖1} → 1 

As n→∞  

Also , since 𝓰(𝜃) is a continuous function , given 𝜖(> 0)we can choose 𝜖1(> 𝑜)such  that  

|𝑇𝑛 − 𝜃| ≤ 𝜖1 → |ℊ(Tn) − ℊ(𝜃)| ≤ 𝜖 

Therefore , 

𝑃{|𝑇𝑛 − 𝜃| ≤ 𝜖1} ≤ 𝑃{|ℊ(Tn) − ℊ(𝜃)| ≤ 𝜖} 

But as n→∞, L.H.S → 1 and, consequently, R.H.S →1,     𝑖, 𝑒. 

𝑃{|ℊ(Tn) − ℊ(𝜃)| ≤ 𝜖} → 1 

As n→∞.  Hence ℊ(Tn) is consistent forℊ(𝜃). 

We can prove the following results: 

(i) If {Tn} is consistent for, then 𝑇𝑛
2 is consistent for 𝜃2. 

 (ii) If {Tn} is consistent for 𝜃(R and non-negative) then √𝑇𝑛 is consistent for √𝜃. 

Proof For any  𝜖(> 0) we have  

𝑃{|𝑇𝑛 − 𝜃| ≥ 𝜖}𝑃{|(√𝑇𝑛 −√𝜃)(√𝑇𝑛 −√𝜃)| ≥ 𝜖} 

= 𝑃 {|√𝑇𝑛 − √𝜃)| ≥
𝜖

√𝑇𝑛 + √𝜃
} 

≥ 𝑃 {|√𝑇𝑛 −√𝜃| ≥
𝜖

√𝜃
} 

Since L. H. S→0, R. H.S →0  as n→∞ 

(iii) If {Tn} is consistent for 𝜃 and {T′n} 𝑖𝑠 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝑓𝑜𝑟 𝜃′, then {𝑇𝑛 ± 𝑇′𝑛} is consistent for 𝜃 + 𝜃′. 

Proof: for any 𝜖(> 0),we have               𝑃{|(𝑇𝑛 + 𝑇𝑛′) − (𝜃 + 𝜃′)| ≥ 𝜖 }  

                                                                         ≤ 𝑃{|𝑇𝑛 − 𝜃| + |𝑇
′
𝑛 − 𝜃′| ≥ 𝜖} 
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                                                                         ≤ 𝑃 {|𝑇𝑛 − 𝜃| ≥
𝜖

2
]𝑈|𝑇′

𝑛
− 𝜃′| ≥ 𝜖} 

                                                                         ≤ 𝑃 {|𝑇𝑛 − 𝜃| ≥
𝜖

2
} + 𝑃{|𝑇′

𝑛
− 𝜃′| ≥

𝜖

2
}→0 

 As  n→∞.  

There fore {𝑇𝑛 + 𝑇
′
𝑛} is consistent for (𝜃 + 𝜃′) 

(iv)if 𝑇𝑛 and 𝑇′𝑛 are  consistent  for 𝜃 and 𝜃’ respectively , 𝑇𝑛𝑇′𝑛is consistent for 𝜃𝜃′. 

Proof: we can write  

𝑇𝑛𝑇′𝑛 =
(𝑇𝑛 + 𝑇′𝑛)

2 − (𝑇𝑛 − 𝑇′𝑛)
2

4
 

þ
→
(𝜃 + 𝜃′)2 − (𝜃 − 𝜃′)2

4
 

EFFICIENCY: 

If 𝑇1 and 𝑇2 are two unbiased estimators of a parameter 𝜃 , each having finite variance  𝑇1 is said to 

be more efficient then 𝑇2 if 𝑉(𝑇1) >𝑉(𝑇2). The (relative) efficient of 𝑇1 relative to 𝑇2 is defined by  

                                                                                 Eff(𝑇1/𝑇2)=
𝑉(𝑇2)

𝑉(𝑇1)
 

It is used to judge the  efficiency  of an  unbiased  estimator  by  comparing  its  variance  with  the 

Cramer- Rao lower  bound (C R B) . 

Definition: Assume that the regularity condition of CR inequality hold (we call it a regular situation) 

for family{𝑓(𝑥, 𝜃), 𝜃 ∈  𝛺}. An unbiased estimator T* of 𝜃 is called most efficient if 𝑉(𝑇∗) equals the 

CRB. In this situation, the ‘efficiency’ of any other unbiased estimator T of 𝜃 is defined by 

Eff(T) =
𝑉(𝑇∗)

V(T)
 

Where T* is the most efficient estimator defined above 

Remarks: 

(i)The above definition not proper in−  

               (𝑎) regular situation when there is no unbiased estimator whose variance equals the CRB 

but an UMVUE exists and maybe found by other methods.  

                (b)Non-regular situations when an UMVUE exists and may be found by other methods 

(ii)The UMVUE is ‘most efficient‘ estimator in the examples considered earlier all UMVUE, whose 

variances equalled CRB are most efficient 
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Example Consider  𝑎, 𝑟, 𝑠(𝑥1 , … 𝑥𝑛) from a normal distribution𝑁(𝜇, 𝜃) where mean 𝜇 is known and 

variance 𝜃(0 < 𝜃 < ∞ ) is to be estimated 

We has seen that 𝑠2 =
1

𝑛
∑ (𝑥𝑖 − 𝜇)

2𝑛
1   is UMVUE of 𝜃 for which the variance is equal to CRB and 

consequently, 𝑠2  is most efficient . Let 𝑠′2 =
1

(𝑛−1)
∑ (𝑋𝑖 − 𝑋̅)

2̅̅ ̅̅ ̅𝑛
1  

Then 𝐸(𝑆′2) = 𝜃 and  𝑉(𝑆′2) =
2𝜃2

𝑛−1
 so that the efficiency of 𝑠′2 is given by  

                                                                         Eff(s′2) =
2𝜃2/𝑛

2𝜃2/(𝑛−1)
      

=
n − 1

n
 

Asymptotic efficiency: As different from the above definition of efficiency we may define efficiency 

in another way as follows, which may be called asymptotic efficiency. 

Let us confine ourselves to consistent estimators which are asymptotically normally distributed. 

Among this class, the estimator with the minimum asymptotic variance is called the ‘most efficient 

estimator’. It is also called best asymptotically normal (BAN) or consistent asymptotically normal 

efficient (CANE) estimator it we denote by  avar(T*) the asymptotic variance of a BAN estimator T* 

then the efficiency of any other estimator T (within the class of asymptotically normal estimators) is 

defined by 

                                                                                       𝐸𝑓𝑓(𝑇/T∗)=
𝑎𝑣𝑎𝑟(T∗)

𝑎𝑣𝑎𝑟(𝑇)
 

Where avar (T) is the asymptotic variance of T.  

Example: Let  (𝑥1, … , 𝑥𝑛) be a random sample from a normal distribution 𝑁(𝜇, 𝜎), Consider the 
‘most efficient estimator 𝑥̅ and another estimator 𝑥̅me. It can be show that both are CAN estimator. 
We have 

𝑉(𝑥̅) =
𝜎2

𝑛
 

And                                                                           𝑉(𝑥̅𝑚𝑒) =
𝜋

2

𝜎2

𝑛
 

So that the efficiency of 𝑥̅𝑚𝑒 is given by  

Eff(𝑥̅𝑚𝑒) =
2

𝜋
 

Example: let  T1, T2 be two unbiased estimators of 𝜃, having the same variance. Show that the 
correlation coefficient ρ between T1, T2 cannot be smaller than 2e-1, where e is the efficiency of each 
estimator, 

Proof. Let To be the most efficient estimator then  

𝑉(𝑻𝟏) = 𝑉(𝑻𝟐) =
𝑽(𝑻𝑶)

𝒆
 

Consider the unbiased estimator 
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𝑇 =
𝑻𝟏 + 𝑻𝟐

2
 

Its variance is 𝑉(𝑇) =
1

4
[𝑉(𝑇1) + (𝑇𝟐) + 2𝜌√𝑉(𝑇1)(𝑇2)] 

= [
𝑉(𝑇𝑜)

𝑒
+
𝑉(𝑇𝑜)

𝑒
+ 2𝜌

𝑉(𝑇𝑜)

𝑒
] 

=
𝐼 + 𝜌

2𝑒
𝑉(𝑇𝑜) 

Since 𝑇𝑜is UMVUE, V (T)≥ 𝑉(𝑇𝑜) which gives 

𝐼 + 𝜌

2𝑒
≥ 1   𝑜𝑟   𝜌 ≥ 2𝑒 − 1 

Example: let 𝑇𝑜 be an UMVME (or most efficient estimator) where 𝑇1 an unbiased with efficiency ‘e’. 

If 𝜌 is the correction coefficient between  𝑇𝑜 and𝑇1, then show that 𝜌 =√𝑒. 

Soln: we have  

𝑒 = 𝑉(𝑇𝑜)/𝑉(𝑇1) 

Or                                                                              𝑉(𝑇1) = 𝑉(𝑇𝑜)/𝑒 

Consider the estimator  

𝑇 =
(1 − 𝜌√𝑒)𝑇𝑜 +√𝑒(√𝑒 − 𝜌)𝑇1

1 − 2𝜌√𝑒 + 𝑒
 

(Which the linear combination of 𝑇𝑜, 𝑇1 with minimum variance) then T is also unbiased, having 
variance  

𝑉(𝑇) = [(1 + 𝜌2𝑒 − 2𝜌√𝑒)𝑉(𝑇𝑜) + 𝑒(𝑒 + 𝜌
2 − 2𝜌√𝑒)

𝑉(𝑇𝑜)

𝑒

+2√𝑒(√𝑒 − 𝜌 − 𝜌𝑒 − 𝜌2√𝑒)𝜌 [
𝑉(𝑇𝑜)

√𝑒
]

[1 − 2𝜌√𝑒 + 𝑒]2

 

=
(1 − 2𝜌√𝑒 + 𝑒)(1 − 𝑝2)

(1 − 2𝜌√𝑒 + 𝑒)2
 

Or                                                          𝑉(𝑇) =
(1−𝜌2)𝑉(𝑇𝑜)

1−2𝜌√𝑒+𝑒
=

1−𝜌2

(1−𝜌2)+(√𝑒−𝜌)2
𝑉(𝑇𝑜) 

Since (1 − 𝜌2) and(√𝑒 − 𝜌 are both non-negative 𝑉(𝑇) ≤ 𝑉(𝑇𝑜) but since 𝑇𝑜 is UMVUE, 𝑉(𝑇)   𝑉(𝑇𝑜). 

therefore  𝑉(𝑇) = 𝑉(𝑇𝑜) , and 𝜌 = √𝑒 

SUFFICIENCY CRITERION:  

A preliminary choice among statistics for estimating 𝜃 , before having for a UMVUE as BAN 
estimator, can be made on the basic of another enter on suggested by R.A fisher. This is called 
‘sufficiency’ criterion.  

Definition: let (𝒙𝟏,… , 𝒙𝒏)  be a random sample from the distribution of X having þ, 𝑑, 𝑓 𝑓(𝑥, 𝜃) 
𝜃 𝜖  𝛺.A statistic 𝑇 = 𝑇(𝒙𝟏,… , 𝒙𝒏) is defined to be sufficient statistic if and only if the conditional 
distribution of (𝒙𝟏, … , 𝒙𝒏)   given T=t does not depend on 𝜃, for any value t. 

[Note: In such a case if we know the value of the sufficient statistic T, then the sample values are 
not needed to tell us anything more about 𝜃]. 

 Also the conditional distribution of any other statistic T (which is not for 𝛺 tray) given T is 
independent of 𝜃.  



21 
 

 
 

A necessary and sufficient condition for T to be sufficient for 𝜃 is that the joint þ. 𝑑, 𝑓 of  (𝒙𝟏,… , 𝒙𝒏) 
should be of the form  

𝑓(𝑥1, … , 𝑥𝑛; 𝜃) = 𝓰(T, 𝜃)ℎ(𝑥1, … , 𝑥𝑛) 

Where the first term on 𝑟, ℎ, 𝑠., depends on T and 𝜃 and the second them is independent of 𝜃. 𝑇his is 
known as Nyman’s Factorisation Theorem which provides a simple method of judging whether a 
statistic T is sufficient  

Remark:  Any one to one function of a sufficient statistic is also a sufficient statistic 

Example: Consider n Bernoulli trials with probability of success P. The associated Bernoulli 

random variables  (𝑥1, … , 𝑥𝑛)  have common distribution given by  

𝑓(𝑥, 𝑝) = 𝑝𝑥(1 − 𝑝)1−𝑥 , 𝑥 = 0,1 

The joint probability function of (𝒙𝟏,… , 𝒙𝒏) is  

𝑓(𝑥1, . . , 𝑥𝑛, 𝑝) = p
∑ xi
n
i (1 − 𝑝)𝑛−∑ 𝑥𝑖

𝑛
𝑖  

= ℊ(∑xi, p) (xi, xn) 

Where                                                 ℊ(∑ 𝑥𝑖 , 𝑝
𝑛
𝑖 ) = 𝑝∑ 𝑥𝑖

𝑛
𝑖 (1 − 𝑝)𝑛−∑ 𝑥𝑖

𝑛
𝑖  

And  𝒽(𝑥1, … , 𝑥𝑛) = 1 

Therefore∑ 𝑥𝑖
𝑛
𝑖  is sufficient for p, and, so is𝑥̅ = ∑ 𝑥𝑖/𝑛

𝑛
𝑖 . 

Example  (𝑥1, … , 𝑥𝑛) be a random sample from a position distribution P(𝜆)𝑖. 𝑒 

𝑓(𝑥𝑖 , 𝜆) =
𝑒−𝜆𝜆𝑥

𝑥!
,   𝑥 = 0,1… 

The joint probability function of (𝑥1, … , 𝑥𝑛) 𝑖𝑠 

𝑓((𝑥1, … , 𝑥𝑛), 𝜆) =
𝑒−𝑛𝜆𝜆𝜖𝑥𝑖

∏ 𝑥𝑖𝑖
𝑛
𝑖

 

= 𝓰(∑xi, 𝜆

n

i

)𝒽(xi, xn) 

Where                                                            𝓰(∑ xi, 𝜆
n
i ) = 𝑒−𝑛𝜆𝜆∑ 𝑥𝑖

𝑛
𝑖  

𝒽(𝑥𝑖 , 𝑥𝑛) =
1

∏ 𝑥𝑖𝑖
𝑛
𝑖

 

Hence. 

∑𝑥𝑖    𝑜𝑟 ∑𝑥𝑖

𝑛

𝑖

𝑛

𝑖

 /𝑛 

 Are sufficient for  𝜆 

Example: let (𝑥1, … , 𝑥𝑛)be a random sample from a Normal population  𝑁(𝜇, 𝜎). 

Case I: 𝜇 unknown, 𝜎 known (=𝜎𝑜) 

𝑓((𝑥1, … , 𝑥𝑛), 𝜇) =
1

(𝜎𝑜√2𝜋)
𝑛𝑒−∑ {𝑥𝑖−𝜇}

2/2𝜎0
2𝑛

𝑖
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=
1

(𝜎𝑜√2𝜋)
𝑛−𝑒

[∑ 𝑥1
2+𝑛𝜇

2−2𝑛𝑥𝜇]/2𝜎0
2𝑛

𝑖

 

= 𝓰(x̅, μ)𝒽(x1, . . xn) 

                                                                           = [2𝜇2 − 2𝑛x̅, μ]/ 2𝜎0
2 

Where                                                             𝓰(x̅, μ) = 𝑒 − ∑ 𝑥𝑖/
𝑛
𝑖 2𝜎0

2 

As  

𝒽(𝑥𝑖 , . . 𝑥𝑛) =
1

(𝜎𝑜√2𝜋)
𝑛𝑒  

Which show that x̅ is sufficient for 𝜇 . 

Case II:  𝜇  is know(= 𝜇𝑜), 𝜎 unknown  

𝑓((𝑥1, … , 𝑥𝑛), 𝜎) =
1

(𝜎𝑜√2𝜋)
𝑛𝑒 −

∑ (𝑥𝑖−𝜇𝑜)
2𝑛

𝑖 /2𝜎0
2 

= 𝓰[∑(xi − μθ)
2, σ

n

i

]𝒽(𝑥𝑖 , 𝑥𝑛) 

Where  

𝓰 [∑(xi − μθ)
2 , σ

n

i

] =
1

(𝜎𝑜√2𝜋)
𝑛𝑒 −

∑ (𝑥𝑖−𝜇𝑜)
2𝑛

𝑖 /2𝜎0
2 

Which show that  ∑ (𝑥𝑖 − 𝜇𝑜)
2𝑛

𝑖  is sufficient for 𝜎 

Case III: Both μ and 𝜎 are unknown 

𝑓(𝑥𝑖 , 𝑥𝑛, 𝜇, 𝜎) =
1

(𝜎𝑜√2𝜋)
𝑛𝑒 −

∑ (𝑥𝑖−𝜇𝑜)
2𝑛

𝑖 /2𝜎0
2 

=
1

(𝜎𝑜√2𝜋)
𝑛𝑒 −

[∑ 𝑥𝑖
2−2𝜇∑ 𝑥𝑖+2𝜇

2𝑛
𝑖

𝑛
𝑖 ]2𝜎0

2 

Which shows that [∑ 𝑥𝑖 , ∑ 𝑥1
2𝑛

𝑖
𝑛
𝑖 ] an jointly sufficient for [𝜇, 𝜎] Similarly,[ 𝑥̅, ∑(𝑥𝑖 , 𝑥)

2 / n-1]are also 
sufficient for [𝜇, 𝜎], 

Example let (𝑥1, … , 𝑥𝑛) be a random sample from a gamer distribution having þ, 𝑑, 𝑓  

𝑓(𝑥, 𝜃, þ) =
1

𝜃þ(þ)
𝑒−

𝑥
𝜃
𝑥þ−1,𝑥≥𝜃  

 

We have  

𝑓(𝑥𝑖 , 𝑥𝑛, 𝜃, þ) =
1

𝜃𝑛þ(þ)𝑛𝑒
−∑ 𝑥𝑖/𝜃

𝑛
𝑖 (∏𝑥𝑖)

𝑛

𝑖

þ−1

 

Case I  𝜃 unknown but  þ is known 

We can write  
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𝑓((𝑥1,… , 𝑥𝑛), 𝜃) = [
1

𝜃𝑛þ([(þ))𝑛𝑒
−∑ 𝑥𝑖/𝜃] [∏𝑥𝑖

𝑛

𝑖

]−þ−1 

So that ∑ 𝑥𝑖(𝑜𝑟 𝑥̅)
𝑛
𝑖  is sufficient for 𝜃. 

Case II: 𝜃 Known but þ unknown  

We can write  

𝑓((𝑥1, … , 𝑥𝑛), þ) = [
1

𝜃𝑛þ([(þ))𝑛𝑒
(∏𝑥𝑖

𝑛

𝑖

)

þ−1

] [𝑒∑𝑥𝑖/𝜃] 

So that is sufficient for  þ 

Case III : Both 𝜃 and þ are unknown it is seen that (∑ 𝑥𝑖 , ∏ 𝑥𝑖
𝑛
𝑖

𝑛
𝑖 ) are jointly sufficient for (𝜃, þ) 

Example: let (𝑥𝑖 , 𝑥𝑛, ) be a random sample from the experiential distribution  

𝑓(𝑥, 𝜃) =
1

𝜃
𝑒−

𝑥
𝜃 , 𝑥 ≥ 𝜃 

It follows from above that ∑ 𝑥𝑖(𝑜𝑟𝑥̅)
𝑛
𝑖  is sufficient for 𝜃. 

Example let (𝑥1, … , 𝑥𝑛)be a random sample from the distribution with þ, 𝑑, 𝑓 

𝑓(𝑥, 𝜃) = 𝜃𝑥𝜃−1, 𝜃 ≤ 𝑥 ≤ 1 

We have  

𝑓((𝑥1, … , 𝑥𝑛), 𝜃) = 𝜃
𝑛 (∏𝑥𝑖)

𝜃−1 = [𝜃𝑛 (∏𝑥𝑖)
𝜃] [

1

∏ 𝑥𝑖
𝑛
𝑖

] 

So that ∏ 𝑥𝑖
𝑛
𝑖=1  is sufficient for 𝜃 

Example let(𝑥1, … , 𝑥𝑛)be a 𝑎. 𝑟. 𝑠 from the Laplace distribution having  þ, 𝑑, 𝑓  

𝑓(𝑥, 𝜃) =
1

2
𝑒−[𝑥−𝜃],∞ < 𝑥 < ∞ 

We have  

𝑓((𝑥1, … , 𝑥𝑛), 𝜃) =
1

2𝑛
𝑒−∑ [𝑥𝑖−𝜃]

𝑛
𝑖=1  

For no single statistics T it is possible to express the above in the form ℊ[T, θ]𝒽(𝑥𝑖 , 𝑥𝑛, ) . Hence 

there exists no statistic T which taken alone is sufficient for θ. However the whole set (𝑥1, … , 𝑥𝑛) or 

the set of order statistics (𝑥(1), … , 𝑥(𝑛))is jointly sufficient for θ   

Example let (𝑥1, … , 𝑥𝑛) be a random sample from the Rectangular distribution 𝑅(0, 𝜃) 
having þ, 𝑑, 𝑓. 

𝑓(𝑥, 𝜃) =
1

𝜃
,−𝜃 ≤ 𝑥 ≤ 𝜃 

We have  

𝑓(𝑥𝑖 , 𝑥𝑛, 𝜃) =
1

𝜃𝑛
∏𝐼[𝜃,𝜃](𝑋𝐼)

𝑛

𝑖=1

 

Where 𝐼𝐴(𝑥) is the indicator function for which  
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                                                                   𝐼𝐴(𝑥) = {
1       𝑖𝑓       𝑥 ∈  𝐴
0        𝑖𝑓   𝑥 ∉   𝐴

  

But                                                  ∏ 𝐼[𝜃,𝜃](𝑋𝐼)
𝑛
𝑖=1 = 𝐼[𝑂,𝑋(1)(𝑋(1)𝐼[𝑥(!),𝑜](𝑥(𝑛)) 

Where 𝑋(1) and 𝑥(𝑛) are the minimum and maximum of sample values(𝑥1, … , 𝑥𝑛) 

Therefore, we can write  

𝑓((𝑥1,… , 𝑥𝑛), 𝜃) = ℊ[x(n), 𝜃]𝒽((𝑥𝑖 , 𝑥𝑛) 

Where                                                   ℊ[x(n), 𝜃] =
1

𝜃𝑛
𝐼[x(n),𝜃](𝑥(𝑛)) 

𝒽(𝑥𝑖 , 𝑥𝑛) = 𝐼[𝑂,𝑥(𝑛)](𝑥𝑖) 

Where shows that 𝑥(𝑛) is sufficient for 𝜃  

Example : If x has þ, 𝑑, 𝑓 

𝑓(𝑥, 𝜃) =
1

𝜃
;−𝜃 ≤ 𝑥 ≤ 𝜃 

We can check that  

𝑓(𝑥𝑖 , 𝑥𝑛, 𝜃) =
1

𝜃𝑛
𝐼
[−𝜃𝑋(𝑛)]

(𝑛(𝑛))𝐼[𝑋(1),𝑂]
𝑋(𝑛)  

So that 𝑥(1) is sufficient for 𝜃 

 

Example Let (𝑥1, … , 𝑥𝑛) be a random sample from the rectangular distribution 𝑅(𝜃1, 𝜃2) having 
þ, 𝑑, 𝑓 

                                                                               𝑓(𝑥, 𝜃1, 𝜃2) = {
1

𝜃2−𝜃1
𝑜

𝜃1 ≤ 𝑥𝑖 ≤ 𝜃2
𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 

     

The þ, 𝑑, 𝑓((𝑥1,… , 𝑥𝑛)) is given by 

𝑓((𝑥1, … , 𝑥𝑛), 𝜃1, 𝜃2) =
1

(𝜃2 − 𝜃1)𝑛
∏𝐼[𝜃1,𝜃2](𝑋𝐼)

𝑛

𝑖=1

 

 

Where                                                    𝐼[𝜃𝑖𝜃𝑖]
(𝑥𝑖) = {

1
0
     
𝑖𝑓𝜃1 ≤ 𝑥𝑖 ≤ 𝜃2 
𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

  

We can write  

∑𝐼[𝜃𝑖𝜃𝑖]
(𝑥𝑖)

𝑛

𝑖

= 𝐼
[𝜃𝑖𝑥(𝑖)

]
(𝑥(𝑖))

𝐼[𝑋(𝐼),𝜃2]
(𝑥(𝑖)) 

= 𝓰[𝑥(𝑖), 𝑥(𝑛), 𝜃1𝜃2]𝓱(𝑥𝑖 , 𝑥𝑛) 

Where  

𝓰[𝑥(𝑖), 𝑥(𝑛), 𝜃1𝜃2] = 𝑰[𝜽𝟏.𝑿(𝒏)](𝒙(𝒊))I{X(1),θ2](𝑥(𝑖)) 

And                                                                          𝓱((𝑥1, … , 𝑥𝑛)) = 1 
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Hence [𝑥(1), … , 𝑥(𝑛)] are jointly sufficient for 𝜃1 , 𝜃2 

Corollary : If 𝜃1 is known 𝑥(𝑛) is sufficient for 𝜃2 

                     If 𝜃1 is known 𝑥(𝑖) is sufficient for 𝜃1 

Example: let ((𝑥1, … , 𝑥𝑛)) be  𝑎, 𝑟, 𝑠 from the rectangular distribution R (-𝜃, 𝜃). 

𝑓(𝑥, 𝜃) =
1

2𝜃
,−𝜃 ≤ 𝑥 ≤ 𝜃 

 

Then  

𝑓((𝑥1, … , 𝑥𝑛), 𝜃) =
1

(2𝜃)𝑛
∏𝐼[−𝜃,𝜃](𝑋𝑖)

𝑛

𝑖=1

 

=
1

(2𝜃)𝑛
𝐼[−𝜃,,𝑥(𝑛)(𝑥(𝑖))𝐼[𝑋(𝑛),𝜃]𝑥(𝑛) 

So that [𝑥(1), … , 𝑥(𝑛)] are jointly sufficient for 𝜃 

Example: [𝑥(1), … , 𝑥(𝑛)] are jointly sufficient for𝜃 in 𝑅(𝜃 −
1

2
, 𝜃 +

1

2
) and  𝑅(𝜃, 𝜃 + 1) 

Example: Let (𝑥1, … , 𝑥𝑛)be a random from an exponential distribution  

𝑓(𝑥) = 𝜆𝑒−
𝜆(𝑥−𝜃), 𝜃 ≤ 𝑥 < ∞ 

Case I : 𝜆 Unknown 𝜃 known (= 𝜃𝑜)  

𝑓((𝑥1, … , 𝑥𝑛), 𝜆) = 𝜆𝑒
𝑛−𝜆∑(𝑥𝑖 − 𝜃)∏𝐼[𝜃,∞)(𝑥𝑖)

𝑛

𝑖=1

𝑛

𝑖

 

Which show that ∑ (𝑥𝑖 − 𝜃𝑜)
𝑛
𝑖  is sufficient for 𝜆or 𝑥̅ is sufficient for 𝜆 

Case II: 𝜆 know  (= 𝜆𝑜) , 𝜃 Unknown  

𝑓((𝑥𝑖 , 𝑥𝑛 , 𝜃) = 𝜆𝑜𝑒−𝜆𝑜∑(𝑥𝑖 − 𝜃)∏𝐼[𝜃,∞)(𝑋𝑖)

𝑛

𝑖=1

𝑛

𝑖

 

= 𝜆𝑜𝑒−𝜆𝑜 ∑𝑥𝑖 + 𝜆𝑛𝜃

𝑛

𝑖

𝐼
[𝜃,∞)

(𝑋(𝑖))  

∏𝑖𝑥(𝑖), 𝑥)(𝑥(𝑖)) 

= {𝑒𝜆𝑛𝜃𝐼
[𝜃,∞)

(𝑋(𝑖))} {𝑥𝑜𝑒
𝑛−𝜆𝜃 ∑ 𝑥𝑖

𝑛
𝑖 𝐼

[𝑥,(𝑖)∞)
(𝑋(𝑖)) } 

Which shows that 𝑥(𝑖) is sufficient for 𝜃 

Case III: Both 𝜆, 𝜃 unknown 

It is easy to check that [∑ 𝑥, 𝑥(𝑖)] are jointly sufficient for [𝜆, 𝜃] 

 

METHHODS OF ESTIMATION: 
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For important methods of obtaining estimators are (I) methods of moments,(II) methods  of 

maximum likelihood (III)method of  minimum χ2 and (IV) method of least squares. 

(I)Method of moments 

Suppose the distribution of a random variable X has K parameters (𝜃1, 𝜃2, …… . . 𝜃𝑘) which have to 

be estimated. let 𝜇𝑟 = 𝐸(𝑥
𝑟) denote  the 𝑟𝑡ℎ moment of  about  𝑂.  in general 𝜇′𝑟  is  a known  

function  of 𝜃1, … , 𝜃𝑘  so that  = 𝜇𝑟(𝜃1, … 𝜃𝑘)Let (𝑥1, … 𝑥𝑛) be a random  sample from the distribution  

of X and let 𝑚𝑟 = ∑ 𝑥𝑖
𝑟/𝑛𝑛

𝑖   be the  𝑟𝑡ℎ. Sample moment from the equation  

𝑚′𝑟 = 𝜇′𝑟(𝜃1, … 𝜃𝑘), 𝑟 = 1, . . . 𝑘 

Whose solution is say  𝜃1…𝜃𝑘 , where 𝜃𝑖  is the estimate of 𝜃𝑖(𝑖 = 1, . . 𝑘) Those are the method of 
moments estimators of the parameters. 

Example     let                                                             𝑥 = 𝑁(𝜇, 𝜎) 

𝜇′1 = 𝜇 

𝜇′2 = 𝜎
2 + 𝜇2 

The equation  
𝑥̅ = 𝜇 

∑𝑥𝑖
2

𝑛
= 𝜎2 + 𝜇2 

Have the solution  

Let  
𝜇 = 𝑥̅ 

                                                                          𝜎 = √
∑ 𝑥𝑖

2𝑛
𝑖

𝑛
− 𝑥̅2=√

∑ (𝑥𝑖−𝑥)̅̅ ̅
2𝑛

𝑖

𝑛
 

Example let 𝑥 ~P (λ) and let (𝑥1, . . , 𝑥𝑛) be random sample from P(λ). 

𝜇′1 = λ 

 

The equation   
𝑥̅ = λ 

 

Provides the estimator  
λ = 𝑥̅ 

Example    let (𝑥1 , . . , 𝑥𝑛) be a random sample from the exponential distribution  

𝑓(𝑥, 𝜃) = 𝜃𝑒−𝜃𝑥 , 𝑥 ⩾ 𝜃 

𝜇′1 =
1

𝜃
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The moment equation  

𝑥̅ =
1

𝜃
 

Provides the estimator  

𝜃 =
1

𝑥̅
 

Remark:  (I) the method of moments estimators are not uniquely defined. We may equate the 

central moments instead of the raw moments and obtain solutions. 

(II) These estimator are not, in general, consistent and efficient but will be so only if the parent 

distributions is of particular form. 

(III) When population moments do not exist (𝑒. 𝑔. 𝐶auchy population) this method of estimation is  

inapplicable. 

 METHOD OF MAXIMUM LIKELIHOOD 

Consider𝑓(𝑥1, . . , 𝑥𝑛, 𝜃), the joint þ, 𝑑, 𝑓 of sample  (𝑥1, . . , 𝑥𝑛) of observations of 𝑎, 𝑟, 𝑠. 𝑋 having the 

þ, 𝑑, 𝑓 𝑓(𝑥, 𝜃) whose parameters  𝜃 is to be estimated. When the values (𝑥1, . . , 𝑥𝑛) are 

given, 𝑓(𝑥1 , . . , 𝑥𝑛, . . 𝜃) may be looked upon as a function of 𝜃 which is called the likelihood function 

of 𝜃  and is denoted by 𝐿(𝜃) = 𝐿(𝜃, 𝑥1, . . , 𝑥𝑛) it gives the likelihood that the 𝑟, 𝑣. (𝑥1, . . , 𝑥𝑛)assumes 

the value (𝑥1, . . , 𝑥𝑛) when 𝜃 is the parameter. 

We want to know from which distribution (𝑖. 𝑒. for what value of 𝜃) is the likelihood largest for this 

set of observations. In other words we want to find the value of  𝜃, denoted by 𝜃  which 

maximizes  𝐿(𝑥1, . . , 𝑥𝑛, 𝜃). The value 𝜃 maximizes the likelihood function is in general, a function of 

𝑥1, . . , 𝑥𝑛 say  

𝜃 = 𝜃(𝑥1, . . , 𝑥𝑛) 

Such that                                                   𝐿(𝜃) = max   𝐿(𝜃, , 𝑥1, . . , 𝑥𝑛)  𝜃 𝜖 𝛺 

Then 𝜃 is called the maximum likelihood estimator or MLE. 

In many cases it would be more convenient to deal with log 𝐿(𝜃),  rather then 𝐿(𝜃),  since log 𝐿(𝜃) 

is maximized for the some value of 𝜃 as 𝐿(𝜃). For obtaining 𝑚. ℓ. 𝑒 we find the value of 𝜃 for which  
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𝜕

𝜕𝜃
log 𝐿(𝜃) = 0 ………(1) 

We must however, check that this provides the absolute maximum. It the derivate dose not exists at 

𝜃 = 𝜃  or equation (1) is not solvable this method of solving (1) will fail. 

Example: Let (𝑥1, . . , 𝑥𝑛) be 𝑎, 𝑟, 𝑠 from the Bernoulli distribution. 

𝑓(𝑥, 𝜃) = 𝜃𝑥(1 − 𝜃)𝑖−𝑥 , 𝑥 = 𝜃, 1 

Then the likelihood                           𝐿(𝜃, 𝑥1, . . , 𝑥𝑛) = 𝜃
∑ 𝑥𝑖
𝑛
𝑖 (𝑖 − 𝜃)𝑛−∑ 𝑥𝑖

𝑛
𝑖  

 And                                         log   𝐿(𝜃) = (∑ 𝑥𝑖
𝑛
𝑖 ) log 𝜃 +(𝑛 − ∑ 𝑥𝑖

𝑛
𝑖 ) log (1- 𝜃) 

Differentiating and equating to zero, we have    

𝜕

𝜕𝜃
log 𝐿(𝜃) = 0 

𝑖, 𝑒                                                                       
∑ 𝑥𝑖
𝑛
𝑖

𝑒
−
𝑛−∑ 𝑥𝑖

𝑛
𝑖

𝑖−𝜃
= 0 

Or                                                                         
∑ 𝑥𝑖−𝑛𝜃
𝑛
𝑖

𝜃(𝑖−𝜃)
= 0 

Or                                                                     𝑒 = ∑ 𝑥𝑖/𝑛
𝑛
𝑖 =𝑥̅ 

𝑚. ℓ. 𝑒 of 𝜃 is 𝜃 = 𝑥̅ 

Example: Let (𝑥1, . . , 𝑥𝑛) be 𝑎, 𝑟, 𝑠 from the Poisson’s distribution  

𝑓(𝑥, 𝜆) =
𝑒−𝜆𝜆𝑥

𝑥!
, 𝑥 = 0,1,2, …. 

Then                                                              𝐿(𝜆, 𝑥1, . . , 𝑥𝑛) =
𝑒−𝑛𝑥𝜆

∑ 𝑥𝑖
𝑛
𝑖

∏ 𝑥𝑖
𝑛
𝑖 !

 

And log 𝐿(𝜆) = 𝑛𝑥 + (∑ 𝑥𝑖
𝑛
𝑖 )log 𝜆 − ∑ 𝑙𝑜𝑔𝑥𝑖!

𝑛
𝑖  

Or                                                                  
𝜕

𝜕𝜃
log 𝐿(𝜆) = −𝑛 +

∑ 𝑥𝑖
𝑛
𝑖

𝜆
 

 

Equating to zero we get 𝜆 = 𝑥̅ 
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𝑚. ℓ. 𝑒 of 𝜆 is 𝜆̂ = 𝑥̅ 

Example: Let 𝑥1, . . , 𝑥𝑛) be 𝑎, 𝑟, 𝑠 from the truncated Binomial distribution having þ, 𝑑, 𝑓 

𝑓(𝑥, 𝜃) = (
2
𝑥
)
𝜃𝑥(𝑖 − 𝜃)2−𝑥

𝑖 − [𝑖 − 𝜃]2
, 𝑥 = 𝑖, 1,2(𝜃 < 𝜃 < 1 

Then                                           𝐿(𝜃, 𝑥𝑖 , 𝑥𝑛) = ∏ (
2
𝑥𝑖
)𝑛

𝑖
𝜃2𝑥𝑖(1−𝜃)2𝑛−2𝑥𝑖

[𝑖−(𝑖−𝜃)2𝑛]
 

And log 𝐿(𝜃) = ∑ 𝑙𝑜𝑔𝑛
𝑖 (

2
𝑥𝑖
) + (∑𝑥𝑖) log 𝜃 + (2𝑛 − 2𝑥𝑖) log(1 − 𝜃) − 𝑛𝑙𝑜𝑔[ 1 − (1 − 𝜃)

2] 

𝜕

𝜕𝜃
log 𝐿(𝜃) =

∑ 𝑥𝑖
𝑛
𝑖

𝜃
+
∑ 𝑥𝑖 − 2𝑛
𝑛
𝑖

1 − 𝜃
+

2𝑛(1 − 𝜃)

1 − (1 − 𝜃)2
 

Equating to zero we get  

∑𝑥𝑖[(1 − 𝜃) {1 − (1 − 𝜃)
2}] + (∑𝑥𝑖 − 2𝑛)[ 𝜃{1 − (1 − 𝜃)

2}] 

−2𝑛𝜃(1 − 𝜃)2] = 𝜃 

Or                                                                       ∑𝑥𝑖[1 − (1 − 𝜃)
2] = 2𝑛𝜃  

Or                                                                         ∑𝑥𝑖[ 𝜃(2 − 𝜃)] = 2𝑛𝜃 

Or                                                                                  2 − 𝜃 =
2

𝜋
 

Or                                                                                  𝜃 = 2 −
2

𝜋
 

𝑚. ℓ. 𝑒 is 𝜃 = 2 −
2

𝜋
 

 

Example:  Let (𝑥1, . . , 𝑥𝑛) be 𝑎, 𝑟, 𝑠 from the normal distribution 𝑁(𝜇, 𝜎) 

Case I: 𝜇 unknown but 𝜎 = 𝜎0(known) 

Then                                            𝐿(𝜇, 𝑥1, . . , 𝑥𝑛) =
1

(𝜎√2𝜋)
𝑛 𝑒−

∑ (𝑥𝑖−𝜇𝜃)
2𝑛

𝑖 /2𝜎2 

And                                          𝑙𝑜𝑔𝐿(𝜇) = −𝑛𝑙𝑜𝑔(𝜎𝜃√2π) − ∑ (xi − μ)
2/2σθ

2n
i  
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Or                                                         
𝜕

𝜕𝜃
log 𝐿(𝜇) =

∑ (𝑋𝐼−𝜇)
𝑁
𝐼

σθ
2  

Equating to zero we get 𝜇 = 𝑥̅ 

𝑚. ℓ. 𝑒 Of 𝜇̂ = 𝑥̅ 

Case II:  μ = μ0(known)but σ unknown 

Then                                        𝐿(𝜎, 𝑥1 , . . , 𝑥𝑛) =
1

(𝜎√2𝜋)
𝑛 𝑒

−
∑ (𝑥𝑖−𝜇𝜃)

2𝑛
𝑖 /2𝜎2 

And                                        log 𝐿(𝜎) = −𝑛𝑙𝑜𝑔𝜎 −
𝑛

2
log(2𝜋) −

−
∑ (𝑥𝑖−𝜇𝜃)

2𝑛
𝑖

2𝜎2
 

Or                                                     
𝜕

𝜕𝜎
𝑙𝑜𝑔𝐿(𝜎) = −

𝑛

𝜎
+
∑ (𝑥𝑖−𝜇𝜃)

2𝑛
𝑖

𝜎3
 

Equating to zero we get                          𝜎 = √
∑ (𝑥𝑖−𝜇𝜃)

2𝑛
𝑖

𝑛
 

𝑚. ℓ. 𝑒 Of 𝜎 is                                               𝜎̂ = √
∑ (𝑥𝑖−𝜇𝜃)

2𝑛
𝑖

𝑛
 

Case III: Both 𝜇 and 𝜎 are unknown  

Then                                                    𝐿(𝜇, 𝜎, 𝑥1, . . , 𝑥𝑛) =
1

(𝜎√2𝜋)
𝑛 𝑒−

∑ (𝑥𝑖−𝜇𝜃)
2𝑛

𝑖 /2𝜎2 

And                                                      𝑙𝑜𝑔𝐿(𝜇, 𝜎) = −
𝑛

2
𝑙𝑜𝑔𝜎 −

𝑛

2
log(2𝜋) −

∑(𝑥𝑖−𝜇)
2

2𝜎2
 

Differentiating partially 𝑤. 𝑟. 𝑡 𝜇, 𝜎 we get 

𝜕

𝜕𝜇
𝑙𝑜𝑔𝐿(𝜇, 𝜎) =

∑(𝑥𝑖 − 𝜇)

2𝜎2
 

And                                                             
𝜕

𝜕𝜎
𝑙𝑜𝑔𝐿(𝜇, 𝜎) =

𝑛

𝜎
+
∑(𝑥𝑖−𝜇)

2

𝜎3
 

Equating to zero both the derivatives and solving the equations we get 𝜇 = 𝑥̅ and 𝜎 = √
∑ (𝑥𝑖−𝑥̅)

2𝑛
𝑖

𝑛
 

𝑚. ℓ. 𝑒 are 𝜇̂ = 𝑥̅ and 𝜎̂ = √
∑ (𝑥𝑖−𝑥̅)

2𝑛
𝑖

𝑛
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Example: Let (𝑥1, . . , 𝑥𝑛) be 𝑎, 𝑟, 𝑠 from the exponential distribution  

𝑓(𝑥, 𝜃) =
1

𝜃
𝑒
−
𝑥
𝜃 , 𝑥 ⩾ 𝜃 

Then                                                             𝐿(𝜃, 𝑥1, . . , 𝑥𝑛) =
1

𝜃𝑒
𝑒−∑ 𝑥𝑖/𝜃

𝑥
𝑖  

And                                                            log 𝐿(𝜃) = −𝑛𝑙𝑜𝑔𝜃 − ∑ 𝑥𝑖/𝜃
𝑥
𝑖  

𝜕

𝜕𝜃
𝑙𝑜𝑔𝐿(𝜃) = −

𝑛

𝜃
+
∑ 𝑥𝑖
𝑛
𝑖

𝜃2
 

Quoting to zero, we get  𝜃 = 𝑥̅ so that the 𝑚. ℓ. 𝑒 of 𝜃is 𝜃 = 𝑥̅ 

Example: Let (𝑥1, . . , 𝑥𝑛) be 𝑎, 𝑟, 𝑠 from the exponential distribution 

𝑓(𝑥, 𝜃) = 𝑒−(𝑥−𝜃), 𝑥 ⩾ 𝜃 

Then                                                            𝐿(𝜃, 𝑥𝑖 , … 𝑥𝑛) = 𝑒
−𝑛(𝑥−𝜃) 

If we differentiate 𝑙𝑜𝑔𝐿(𝜃) 𝑤, 𝑟, 𝑡 𝜃 and equate to zero we get 𝑛 = 𝜃 which does not yield any result. 

Now 𝐿(𝜃) is maximized by choosing the maximum value of  𝜃 subject to the condition  

𝜃 ≤ 𝑥(1) ≤ 𝑥(2) ≤,… ,≤ 𝑥(𝑛) 

Which shows that 𝜃 = 𝑥(1) so that the 𝑚. ℓ. 𝑒 of 𝑥 = 𝑋1 

Example: X has 𝑝. 𝑑. 𝑓 

𝑓(𝑥, 𝜆, 𝜃) = 𝜆𝑒−
𝜆(𝑥−𝜃), 𝑥 ⩾ 𝜃 

𝑚. ℓ. 𝑒𝜃 = 𝑥(𝑖)  

𝜆 =
1

𝑥̅ − 𝑥(1)
 

 

Example:  Let(𝑥1, . . , 𝑥𝑛)  be 𝑎, 𝑟, 𝑠 from the distribution 

𝑓(𝑥, 𝜃) = 𝜃𝑥𝜃−1, 0 ≤ 𝑥 ≤ 1(𝜃 > 1) 

Then                                                      𝐿(𝜃, 𝑥1, . . , 𝑥𝑛) = 𝜃
𝑛(∏ 𝑥𝑖)

𝑛
𝑖

𝜃−1
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And                                                      log 𝐿(𝜃) = 𝑛𝑙𝑜𝑔 𝜃 + (𝜃 − 1)∑ 𝑙𝑜𝑔𝑥𝑖
𝑛
𝑖  

Or                                                             
𝜕

𝜕𝜃
𝑙𝑜𝑔𝐿(𝜃) =

𝑛

𝜃
+ ∑ 𝑙𝑜𝑔𝑥𝑖

𝑛
𝑖  

Equating to zero we get 𝜃 =
𝑛

−∑ log 𝑥𝑖
 

𝑚. ℓ. 𝑒 of 𝜃 =
𝑛

∑ 𝑙𝑜𝑔𝑥𝑖
𝑛
𝑖

 

Example: Let(𝑥1, . . , 𝑥𝑛)  have rectangular distribution   𝑅 (0, 𝜃) having þ, 𝑑, 𝑓 

𝑓(𝑥, 𝜃) =
1

𝜃
, 0 ≤ 𝑋 ≤ 𝜃 

Then                                                𝐿(𝜃, 𝑥1, . . , 𝑥𝑛) =
1

𝜃𝑛
, 0 ≤ 𝑥(1) ≤ ⋯ ≤ 𝑥(𝑛) ≤ 𝜃 

Which is maximized when 𝜃 is maximum subject to the condition 

0 ≤ 𝑥(1) ≤ ⋯ ≤ 𝑥(𝑛) ≤ 𝜃  

The minimum value of 𝜃 is 𝑥(𝑛) so that  

𝑚. ℓ. 𝑒 of 𝜃 is𝜃 = 𝑥(𝑖) 

 

Example: Let(𝑥1, . . , 𝑥𝑛)   be 𝑎, 𝑟, 𝑠 of the regular distribution 𝑅(−𝜃, 𝜃) having þ, 𝑑, 𝑓 

𝑓(𝑥, 𝜃) =
1

2𝜃
, 0 ≤ 𝑋 ≤ 𝜃 

Then                                                𝐿(𝜃, 𝑥1, . . , 𝑥𝑛) =
1

2𝑛𝜃𝑛
, −𝜃 ≤ 𝑥(1) ≤ ⋯ ≤ 𝑥(𝑛) ≤ 𝜃 

 

When is maximized when 𝜃 is minimum subject to the condition −𝜃 ≤ 𝑥(1) ≤ ⋯ ≤ 𝑥(𝑛) ≤ 𝜃 

So that since −𝜃 ≤ 𝑥(1) or 𝜃 ⩾ −𝑥(1) 

𝑚. ℓ. 𝑒 of 𝜃 is 𝜃 = −𝑥(𝑖) 

Example: Let(𝑥1, . . . 𝑥𝑛)   be 𝑎, 𝑟, 𝑠 from the regular distribution 𝑅(𝜃1, 𝜃2) having þ, 𝑑, 𝑓 
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𝑓(𝑥, 𝜃1 , 𝜃2) =
1

𝜃2 − 𝜃1
, 𝜃1 ⪕ 𝑥 ⪕ 𝜃2 

Then                                         𝐿(𝜃1, 𝜃2, 𝑥𝑖𝑥𝑛) =
1

(𝜃2𝜃1)
𝑛 , 𝜃1 ⪕ 𝑥(𝑖) ⪕ ⋯𝑥(𝑛) ⪕ 𝜃2 

In maximized when  (𝜃2 − 𝜃1) is minimum 𝑖, 𝑒𝜃1 is maximum and  𝜃2 is minimum subject to the 

condition 

𝜃1 ⪕ 𝑥(𝑖) ⪕.⪕ 𝑥(𝑛) ⪕ 𝜃2 

We have to take    𝜃2 = 𝑥(𝑛) and 𝜃1 = 𝑥(𝑖) so that 𝑚. ℓ. 𝑒 𝑜𝑓𝜃1and 𝜃2 are 𝜃1 = 𝑥(𝑖) and𝜃2 = 𝑥(𝑛) 

Example: Let(𝑥1, . . . 𝑥𝑛)   be 𝑎, 𝑟, 𝑠 from the regular distribution 𝑅(𝜃 − 𝑐, 𝜃 + 𝑐) having þ, 𝑑, 𝑓 

𝑓(𝑥, 𝜃) =
1

(2𝑐)
, 𝜃 − 𝑐 ⪁ 𝑥 ⪕ 𝜃 + 𝑐 

Then 𝐿(𝜃, 𝑥𝑖 , 𝑥𝑛) =
1

(2𝑐)𝑛
, 𝜃, 𝑐 ⪁ 𝑥(𝑖) ⪁.⪁ 𝑥(𝑛) ⪁ 𝜃 + 𝑐is maxi zed for any 𝜃such that 

𝜃 − 𝑐 ⪁ 𝑥(𝑖) ⪁ ⋯ ⪕ 𝑥(𝑛) ⪕ 𝜃 + 𝑐 

𝑖. 𝑒 𝜃 − 𝑐 ⪁ 𝑥(𝑖) or 𝜃 ⪕ 𝑥(𝑖)𝑐 and 𝜃 + 𝑐 ⩾ 𝑥(𝑛) − 𝑐  

And 𝜃 + 𝑐⩾𝑥(𝑛) is 𝜃⩾𝑥(𝑛) − 𝑐 

This shows that any statistics which lies in between 𝑥(𝑛) − 𝑐 and 𝑥(𝑖) + 𝑐, 𝑒. 𝑔
𝑥(𝑖)+𝑥(𝑛)

2
is  𝑎,𝑚. 𝑙. 𝑒 the 

𝑚. 𝑙. 𝑒 is not unique in this case 

Example 12 It x has 𝑅(𝜃, 𝜃 + 𝐼),any statistics  which  lies between 𝑥(𝑛) − 1 and 𝑥(𝑖) is a 𝑚. 𝑙. 𝑒 if 𝜃 

Example 13 Let(𝑥1, . . . 𝑥𝑛) be 𝑎, 𝑟, 𝑠 from the regular distribution 𝑅(𝜃, 2𝜃) having þ, 𝑑, 𝑓 

𝑓(𝑥, 𝜃) =
1

𝜃
𝜃 ⪁ 𝑥 ⪁ 2𝜃 

Then                                            𝐿(𝜃, 𝑥𝑖 , . . 𝑥𝑛) =
1

𝜃𝑛
, 𝜃 ⪁ 𝑥(𝑖) ⪁ ⋯ ⪁ 𝑥(𝑛) ⪁ 2𝜃 

Is maxi zed when 𝜃 is minimum subject to the condition 𝜃 ⪁ 𝑥(𝑖) ⪁ ⋯ ⪁ 𝑥(𝑛) ⪁ 2𝜃 

𝑖. 𝑒                                                              𝜃 ⪁ 𝑥(1)……(𝑖)  

And                                                          𝜃 ⩾ 𝑥(𝑛)…… . (𝑖𝑖) 
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Since                                                           
𝑥(𝑛)

𝑥(𝑖)
⪁

2𝜃

𝜃
= 2 

𝑖. 𝑒                                                               
𝑥(𝑛)

2
⪁ 𝑥(𝑖) 

The minimum value of 𝜃 satisfying (𝑖), (𝑖𝑖) is 
𝑥(𝑛)

2
 so that the 𝑚. 𝑙. 𝑒of 𝜃 is  

𝜃 =
𝑥(𝑛)

2
 

Example: Let(𝑥𝑖 , . . 𝑥𝑛) be 𝑎, 𝑟, 𝑠 from the regular distribution 𝑅(−𝜃, 𝜃) having þ, 𝑑, 𝑓 

𝑓(𝑥, 𝜃) =
1

2𝜃
,−𝜃 ⪁ 𝑥 ⪁ 𝜃 

Then  

𝐿(𝜃, 𝑥𝑖 , . . 𝑥𝑛) =
1

(2𝜃)𝑛
, 𝜃 ⪁ 𝑥(1) ⪁. . ⪁ 𝑥(𝑛) ⪁ 𝜃 

This is maximized when 𝜃 is minimum subject to the condition  

𝑥(𝑛) ⪁ 𝑜𝑟𝜃 ⩾ 𝑥(𝑛) 

And                                                                     −𝜃 ⪁ 𝑥(𝑖)𝑜𝑟𝜃 ⩾ −𝑥(𝑖) 

This happens when  𝜃 = max (−𝑥(𝑖), 𝑥(𝑛)) 

𝑚, 𝑙, 𝑒  of 𝜃 = max (−𝑋(1), 𝑋(𝑛)) 

 

 

Example: Let(𝑥1, . . . 𝑥𝑛) be 𝑎, 𝑟, 𝑠 from the Laplace distribution with þ, 𝑑, 𝑓 

𝑓(𝑥, 𝜃) =
1

2
𝑒−[𝑥−𝜃], −∞ < 𝑥 < ∞ 

Then                                                       

                                                                       𝐿(𝜃, 𝑥𝑖 , 𝑥𝑛) =
1

2
𝑒−∑ [𝑛𝑖 𝑥−𝜃] 

And                                                     𝑙𝑜𝑔𝐿(𝜃) = −𝑛𝑙𝑜𝑔2 − ∑ [𝑥𝑖 − 𝜃]
𝑛
𝑖  
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Which is maximized when 𝜃 is the sample median. 

𝑚, 𝑙, 𝑒  of 𝜃 is 𝜃 = 𝑥𝑚𝑒 

Example: Let(𝑥1, . . . 𝑥𝑛) be n independent 𝑟, 𝑣, 𝑠 such that 𝑥𝑟  has normal distribution 𝑁(𝑟𝜃, 𝑟3𝜎2) 

We have to estimate 𝓮and then  

𝐿(𝜃, 𝑥𝑖 , 𝑥𝑛) =∏⌈
𝐼

√2𝜋𝑟3𝜎2

𝑛

𝑟=𝑖

𝑒
−

𝐼
2𝑟3𝜎2

(𝑥𝑟−𝑟𝜃)
2

 

= (
1

2𝜋𝜎
)

𝐼

(𝑛𝑖)2
𝑒
−

1
2𝜎2

∑
(𝑥𝑟−𝑟𝜃)

2

𝑟3
𝑛
𝑟1  

And                                        log 𝐿(𝜃) = 𝑛𝑙𝑜𝑔 (
1

2𝜋𝜎
) −

3

2
𝑙𝑜𝑔𝑛1 −

1

2𝜎2
∑
(𝑥𝜎−𝑟𝜃)

2

𝑟3
 

Or                                                          
𝜕

𝜕𝜃
𝑙𝑜𝑔𝐿(𝜃) =

1

2𝜎2
∑

(𝑥𝑟−𝑟𝜃)

𝑟2
𝑛
𝑟=1  

Equating to zero ,  we get  

∑[
(𝑥𝑟 − 𝑟𝜃)

𝑟2
] = 𝜃

𝑛

𝑖

 

Or                                                                              𝜃 =
∑ 𝑥𝑟/𝑟

2𝑛
𝑖

∑ 𝑖/𝑟2𝑛
𝑖

 

𝑚. 𝑙. 𝑒 Of 𝜃 is 

𝜃 =
∑ 𝑥𝑟/𝑟

2𝑛
𝑖

∑ 𝑖/𝑟2𝑛
𝑖

 

We have                                                    𝐸(𝜃) = 𝜃, 𝑉(𝜃) =
𝜎2

∑ (𝐼 𝑟⁄ )𝑛
𝐼

 

Optimum properties of MLE:  (i) If 𝜃 is 𝑚. 𝑙. 𝑒 of 𝜃 and Ψ (𝜃) is a simple valued function of 𝜃 with 

unique inverse, then Ψ(𝜃) is the 𝑚. 𝑙. 𝑒 of Ψ (𝜃). 

(ii) If a sufficient statistics exists for 𝜃 𝑚. 𝑙. 𝑒 𝜃 is a function of this sufficient statistics. 

(iii) Suppose  𝑓(𝑥, 𝜃) statistics certain regularity conditions and 𝜃𝑛 = 𝜃𝑛(𝑥1, . . . 𝑥𝑛) is the 𝑚. 𝑙. 𝑒 of a 

random sample of size n from 𝑓(𝑥, 𝜃) 

Then-     (𝑎) {𝜃𝑛} is consistent sequence of estimators of 𝜃 
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    (b) 𝜃𝑛 is asymptotically normally distributed with  mean  𝜃 variance 

1

𝑛𝐸[
𝜕

𝜕𝜃
𝑙𝑜𝑔𝑓(𝑥,𝜃)]

2 

(c)The sequence of estimators 𝜃𝑛 has the smallest asymptotic variance among all consistent, 

asymptotically normally distributed estimate of 𝜃, 𝑖. 𝑒 𝜃𝑛 is BAN or CANE or most efficient. 

(iii) METHOD OF MINIMUM χ2:   Let X be 𝑎. 𝑟. 𝑣 with þ. 𝑑. 𝑓 𝑓(𝑥, 𝜃) where parameter to be 

estimated 𝜃 = (𝜃1, … . . 𝜃𝑟) Suppose S1, S2....S𝓀 are 𝒽 mutually  exclusive  classes which from a 

partition of the range of X. Let the profanity at X falls in SJ be  

þ, (𝜃) = ∫ 𝑓(𝑥, 𝜃)𝑑𝑥 , 𝑗 = 1,2, …𝓀
 

𝑆𝑗

 

Where                                                                 ∑ þ, (𝓀
𝑗=1 𝜃) = 1  

Suppose ,in practice ,corresponding  to a random sample of n observations from  the distribution of 

X we are given the frequencies (𝑁1, … . . , 𝑁𝓀) where 𝑁𝑗=observed  number of sample observations  

falling in the class 𝑆𝐽(𝑗 = 1,2… . . 𝓀) such that ∑ 𝑁𝑗 = 𝑛
𝓀
𝑖  then the expected number  of observation  

in 𝑆𝐽  is 𝑛þ𝑗(𝜃), Define  

χ2 =∑[𝑛𝑗 − 𝑛þ𝑗(𝜃)]
2

𝓀

𝑗=1

/𝑛þ
𝑗
(𝜃) 

Where 𝑛𝑗  is the observed value of 𝑁𝑗(𝑗 = 1,2… .𝓀) Evidently 𝑥2 will be a function of 𝜃(𝑜𝑟 𝜃𝑖 , . . 𝜃𝑟)to 

obtain the estimator of 𝜃we minimise 𝑥2𝑤. 𝑟, 𝑡 𝜃. The minimise 𝑥2 estimator of 𝜃 is that 𝜃 which 

minimise above χ2. 

The equation (s) for determining the estimator(s) by this me that are 

𝜕χ2

𝜕𝜃
= 𝜃  𝑜𝑟

𝜕χ2

𝜕𝜃
= 0  (𝑖 = 1,……𝑟) 

Remarks: 

(i)Often it is difficult to obtain 𝜃 ̂which minimum χ2, hence χ2 is changed to modified  

χ2 =∑[𝑛𝑗 − 𝑛þ𝑗(𝜃)]
2

𝓀

𝑗=1

𝑛𝑗  
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(If 𝑛𝑗 = 0 , unity is used). The modified minimum χ2 estimator of 𝜃 is 𝜃 which minimises the 

modified χ2 

(ii) For large n, the minimum χ2 and likelihood equations are identical and, consequently, provide 

identical minimum  χ2maximum likelihood estimators. 

(iii) The minimum χ2 estimators are consistent asymptotically normal and efficient . 

Example: Let(𝑥1 , . . 𝑥𝑛) be 𝑎, 𝑟, 𝑠 from a Bernoulli distribution having  þ. 𝑑. 𝑓 

𝑓(𝑥, 𝜃) = 𝜃𝑥(1 − 𝜃)1−𝑥 , 𝑥 = 0,1 

Take 𝑁𝑗 =the number of observations equal to j for 𝒿= 0,1 Here the range of X is pinioned into the 

two sets consisting of the minimises 𝜃,and 𝑖 respectively then  

þ0(𝜃) = 𝑃(𝑥 = 0) = 1 − 𝜃

þ1(𝜃)𝑃(𝑥 = 1) = 𝜃
} 

And  

χ2 =∑
[𝑛𝑗 − 𝑛þ𝑗(𝜃)]

2

𝑛þ
𝑗
(𝜃)

𝑖

𝑗=𝑜

 

=
[𝑛𝜃 − 𝑛(1 − 𝜃)]

2

𝑛(1 − 𝜃)
+
[𝑛𝑖 − 𝑛𝜃]

2

𝑛𝜃
 

=
[𝑛 − 𝑛𝑖 − 𝑛(1 − 𝜃)]

2

𝑛(1 − 𝜃)
+
[𝑛𝑖 − 𝑛𝜃]

2

𝑛𝜃
 

=
[𝑛𝑖 − 𝑛𝜃]

2

𝑛

1

𝜃(1 − 𝜃)
 

By inspection χ2 = 𝜃 for 𝜃 = 𝑛𝑖/𝑛 Therefore   𝜃 = 𝑛𝑖/𝑛. This is a same as what would be obtained 

by the method of moments or method of maximum likelihood  

(IV) METHOD OF LEAST SQUARES   Suppose γ is e random variable whose value depends 

on the value of a (non-random) variable𝑥. For example the weight of a baby (Y) depends on its 

age(𝑥) , the temperature (Y) of a place at a given time depends on its altitude (𝑥), or the salary (Y) 

of an individual at a given age depends on the number of years (𝑥) of formal education which he has 

had the maintenance cost (y) per year of an automobile depends on its age (𝑥) etc. 
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We assume that the distribution of the 𝑟. 𝑣 𝑌 is such that for a given 𝑥, 𝐸(Y/x) is a linear function of 

𝑥 while the variance and higher moments of γ are independent of 𝑥. It means that we assume the 

liner model  

                                                                            𝐸(Y/𝑥)=𝛼 + 𝛽𝑥 

Where 𝑑 and 𝛽 and two parameters .We also write  

Y = 𝛼 + 𝛽𝑥 + 𝜖 

Where 𝜖 is 𝑎, 𝑟, 𝑢 such that E (𝜖) = 𝜃, 𝑉(𝜃) = 𝜎2  

The problem is to estimate the parameters 𝒹 and 𝛽 on the basic of a random sample of n 

observations(γ, xi), (γ2, x2), …… , (γn, xn)  

The method of least squares estimations of α and 𝛽 specifies that we should take as our estimates of 

𝒹 and 𝛽   those values that minimise  

∑[𝓎𝑖 − α− xi]
2

𝑛

𝑖=1

 

Where 𝓎𝑖 is the observed value of yi and xi are the associated values of x. This we minimise the sum 

of squares of the residuals when applying the method of least squares. 

The least squares estimators of α and 𝛽 

Are                                                                       𝛽̂ =
∑ (𝓎𝑖−𝓎̅)(𝑥𝑖−𝑥̅)
𝑛
𝑖=1

∑ (𝑥𝑖−𝑥̅)
2𝑛

𝑖=1

 

And                                                                       α̂ = 𝓎̅ −  𝛽̂𝑥̅ 

 

Remarks: 

The least square estimator do not have any optimum properties ever asymptotically However in 

linear estimation this method provides good estimation in small simples. These estimators are 

minimum variance unbiased estimators among the class of linear function of Y′s. 
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TESTING OF HYPOTHESIS 

(NEYMAN PEARSON THEORY) 

Let x be 𝑎, 𝑟, 𝑢 with þ. 𝑑. 𝑓   𝑓(𝑥, 𝜃) where 𝜃 (may be 𝑎 vector ( 𝜃1, …… . 𝜃𝑘) is an unknown 

parameter. A random  sample  of n observation  denoted  by 𝐸 = (𝑥1……𝑥𝑘) which  takes  values  in 

general, in the n-dimensional  real space 𝑅𝑛    the parameter space (all possible  values  of the 

parameter is denoted by Ω, say . For any subset AC 𝑅𝑛    we can calculate. 

𝑝𝑜(𝐸 𝐸 𝐴) = ∫ [∏𝑓(𝑥, 𝜃)

𝑛

𝑖=1

]
 

𝐴

𝑑𝑥,…𝑑𝑥𝑛 

Which will depend on 𝜃. 

Definition: A statistical hypothesis is a statement about the parameter 𝜃in the form 𝐻:𝜃 𝜖 ω(< Ω) 

For example consider  

𝐻: 𝜃 = 𝜃𝑂 

𝑜𝑟 𝐻: 𝜃 ⩾ 𝜃0 𝑜𝑟 𝐻: 𝜃 ≠ 𝜃0 𝐻: 𝜃1 <  𝜃 < 𝜃2 

Definition If a hypotheses specifics an exact value of the parameter𝜃, it is called a simple hypothesis 

𝑒, 𝑔 . 𝐻: 𝜃 = 𝜃0 in this  case ω in 𝐻 ∶ 𝜃  𝜖 ω is  a set  of a single point  

If a hypothesis does not fully specify the value of 𝜃( but gives a set of possible values only) it is 

called a composite hypothesis 𝑒, 𝑔 𝐻: 𝜃 ≠ 𝜃0  or 𝐻: 𝜃 ⩾ 𝜃0 etc. In this case ω in 𝐻: 𝜃 𝜖 ω is set of 

more than one point. 

Definition the hypothesis which is being actually tested is called the null hypothesis and other 

hypothesis which is stated as the alternative to the null hypothesis is called alternative hypothesis. 

For example, null hypothesis may be 𝐻𝑜: 𝜃 = 𝜃0 and the alternative may be 𝐻𝑖: 𝜃 ≠ 𝜃0or 𝐻𝑖 : 𝜃 >

𝜃0or 𝐻𝑖: 𝜃 ≤ 𝜃0 etc. 

Both null and alternative hypothesis may be simple or composite .For our study, we shall usually 

take null hypothesis to be simple . 

Suppose we want to test a null hypothesis  𝐻𝑂  against an alternative hypothesis 𝐻1on the basis of a 

random sample 𝐸 = (𝑋1, . . 𝑋𝑛) in the sense that we have to decide when to reject or accept 𝐻𝑂    
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Definition A Statistical test of a (null) hypothesis  𝐻𝑂  against an alternative hypothesis 𝐻1 is a rule 

or procedure for deciding when to reject or accept 𝐻𝑂  on the basis of the sample 𝐸 = (𝑋𝐼 , . . 𝑋𝑛) .It 

specifies a position of the sample space 𝑅𝑛   into two disjoint subsets W and 𝑊̅ = 𝑅𝑛 −𝑊  such that 

we reject 𝐻𝑂  when 𝐸 𝜖 𝑊and accept 𝐻𝑂  when 𝐸  𝜖 𝑊̅̅̅̅ [We note that the rejection of 𝐻𝑂  amounts to 

acceptance of 𝐻1 and vice-versa] 

Definition The set W, corresponding to a test T, which is that we reject  𝐻𝑂  when 𝐸 𝜖 𝑊 is called the 

critical region of the test while 𝑊 ̅̅̅̅ is called its acceptance region. For different test the critical 

regions are different. 

Two types of errors: In a testing problem we are liable to commit two types of error. Suppose 𝐻𝑂 is 

true and get 𝐸  𝜖 𝑊̅̅̅̅ so that we reject 𝐻𝑂  this is called the Type I error which occasion when we 

reject the null hypothesis when it is actually true. On the other hand, suppose 𝐻𝑂  is false and 𝐻𝑖is 

true and yet 𝑥 𝜖 𝑤̅ so that we accept  𝐻𝑂   this is called the types II errors which occurs when we 

accept the null hypothesis when it is actually false. We denote by α and 𝛽 the probability of type I 

error and   type II error, respectively, 𝑖, 𝑒 

                                                                𝛼 = 𝑃{𝐻𝑜/𝐻𝑜is true} 

                                                                  = 𝑃{𝐸 𝜖 𝑊/ 𝜃  𝜖𝐻𝑜}  

And                                                      𝛽 = 𝑃{𝐴𝑐𝑐𝑒𝑝𝐻𝑜/𝐻𝑜  is fabe  

                                                                  = 𝑃{𝐸𝜖𝑊̅/ 𝜃 𝜖𝐻𝑜} 

Definition The probability of type I error for a test T, denoted by ∝ is called the “size” or level of 

significance of the test T. 

Remark  If 𝐻𝑜  is simple (say  𝐻𝑜:𝜃=𝜃𝑜) is clearly defined ,when 𝐻𝑜  is composite (say 𝐻𝑜 : 𝜃 𝜖 𝑊)we 

take  

                                                                  𝛼 = 𝑠𝑢𝑝𝑃𝑇{𝐸 𝜖𝑊/: 𝜃} 𝜃𝜖𝐻𝑜  

Definition For a test T having the co region 𝑤2 the power function 𝑃𝑇() is defind by  

                                                                𝑃𝑇(𝜃) = 𝑃{𝑅𝑒𝑗𝑒𝑐𝑡𝐻𝑜/ 𝜃} 

= P𝜃{E 𝜖 𝑊}  



41 
 

 
 

As a function of 𝜃 

Evidently, 

𝑃𝑇(𝜃) = 𝛼  𝑓𝑜𝑟 𝜃  𝜖 𝐻𝑜  

𝑃𝑇(𝜃) = 1 − 𝛽 𝜃  𝜖 𝐻1 

If we would find a test of the given hypothesis for which both ∝and 𝛽are minimum it would be the 

best. Unfortunately, it is not possible to minimise both error simultaneously  for a fixed sample size 

test. Consists two tests T and 𝑇2 defined as follows     

𝑇𝐼  always rejects  HO 𝑖, 𝑒 its critical  region W1 =𝑅𝑛 , while 𝑇2 always accepts 𝐻𝑜  𝑖, 𝑒 its cur region 

𝑊2 = ∅ then for  T1 , ∝= 0 and 𝛽 = 1 this shows that if the probability of  type I error becomes 

minimum  than  the probability of type II error becomes maximum and vice-versa what is done is to 

fix ∝ , taking ∝ to be quite small (in practical ∝= .05 or .01)so that all test of size ∝ are only 

considered. Among all test of a given size∝ comparison made on the basic of their power function. If 

T and T are two tests (for the same testing problem) of same size ∝, T is said to be better than T if 

its  power is greater than the  power of T for alteration hypothesis (equivalently the probability of 

type II  error  for T is less then the probability of type II for T,) 

Simple hypothesis against a simple alternation:   Consider the testing problem  

                                                                                   𝐻𝑂: 𝜃 = 𝜃𝑂  

𝐻1: 𝜃 = 𝜃1(≠ 𝜃𝑂) 

Definition A test T* is called a most powerful test (MP) of size ∝ (0 <∝< 1) if only if the probability 

of type I error is equal to ∝ and its power 𝑃𝑇(𝜃) is not less than the power 𝑃𝑇(𝜃) of all other test T 

of size ∝, 𝑖, 𝑒 

(𝑖)𝑃𝑇∗(𝜃𝑜) =∝ 

(𝑖𝑖)𝑃𝑇∗(𝜃𝑖) = 𝑃𝑇(𝜃𝑖) 

For any other test T of size ∝ 

[This means that the probability of type II error for T is less that of IV any other test] 

Simple hypothesis against a composite alteration:  Consider the testing problem  



42 
 

 
 

𝐻𝑜 : 𝜃 = 𝜃0 

𝐻𝑖: 𝜃 ≠ 𝜃0(𝑜𝑟𝜃 > 𝜃𝑜𝑜𝑟𝜃 < 𝜃0) 

Definition: A test T is called a uniformly most powerful test (VMP) of size ∝( 0 <∝< 1)if its 

probability type I error is equal to ∝ and its power function is such that  

𝑃𝑇𝑥(𝜃) ⩾ 𝑃𝑇(𝜃)for all 𝜃𝜖𝐻𝐼and  all other test T of size ∝ 

Example Let x be 𝑎, 𝑟, 𝑢 having exponential distribution  

𝑓(𝑥, 𝜃) = 𝜃 𝑒−𝜃𝑥(𝑥 ⩾ 𝜃) 

And we want to test  

Against                                                               
𝐻0: 𝜃 = 2
𝐻1: 𝜃 = 1

} 

Let the sample consist of only one observation X and consider two tests T and T with associated 

regions 𝑊 = {𝑋 ⩾ 𝐼} and  𝑊 = {𝑋 ≤ 0.7} respectively  

The probabilities of two error for T are  

∝= 𝑃{𝑋 ⩾ 1/𝜃 = 2} = 2∫ 𝑒−2𝑥𝑑𝑥 = 0.135
∞

1

 

𝛽 = 𝑃{𝑋 ⩾ 1/𝜃 = 1} = ∫ 𝑒−𝑥𝑑𝑥 = 0.635
1

0

 

The probabilities of two error for T are  

∝= 𝑃{𝑋 ⩾ 0.7/𝜃 = 2} = 2∫ 𝑒−2𝑥𝑑𝑥 = 0.135
7

0

 

𝛽 = 𝑃{𝑋 ⩾ 0.7/𝜃 = 1} = ∫ 𝑒−2𝑥𝑑𝑥 = 0.932
∞

7

 

Obviously T is better than T’. 

Example A Two –faced coin is tossed six times for which the probability of getting head in a toss is 𝜃   

and the probability of getting a tail is (1−𝜃) . it is required to test the hypothesis. 

𝐻0: 𝜃 = 𝜃𝑜 =
1
2⁄  
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Against                                                                 𝐻1: 𝜃 = 𝜃𝑜 =
2
3⁄  

If the test consists in rejecting 𝐻0 when head appeases nurse then tours times and accepting 𝐻0  

otherwise find 𝑑, 𝛽 soln  

∝= 𝑃{= 𝜃𝑜} =
7
26⁄  

𝛽 = 1 − 𝑃{𝑅𝑒𝑗𝐻0/𝜃 = 𝜃1} = 1 −
28

36
⁄  

Example Let x have an exponential distribution  

𝑓(𝑥, 𝜃) =
1

𝜃
𝑒
−
𝑥
𝜃 , 𝑥 ⩾ 𝜃 

It is required to test                                                  𝐻𝑂 : 𝜃 = 1 

𝐻1: 𝜃 = 4 

Find  ∝ and 𝛽 for the test having region 𝐶 = {𝑋 > 3}on the basic of a sample observation  

Soln : We have                                        ∝= 𝑃{𝑅𝑒𝑗𝐻𝑂/𝜃=𝜃𝑂} 

                                                                    = 𝑃{𝑋 > 3/ 𝜃 = 1} 

= ∫ 𝑒−𝑥𝑑𝑥 = 3𝑒
∞

3

 

𝛽 = 𝑃{𝑠𝑐𝑒. 𝐻0/𝜃 = 𝜃0 

                                                                          = 1− 𝑃{𝑋 > 3/𝜃=4} 

                                                                          =1−
1

4
∫ 𝑒−𝑥/4𝑑𝑥
∞

3
 

= 1 − 𝑒−3/4 

Power                                                                 = 1 − 𝛽 = 𝑒−3/4 

Example Let x have the rectangular distribution  

𝑓(𝑥, 𝑜) =
1

𝜃
, 𝑜 ⪕ 𝑥 ⪕ 𝜃 

It is required to test the hypothesis  
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                                                                                  𝐻0: 𝜃 = 1    

Against                                                                   𝐻1: 𝜃 = 2    

Suppose one observation is taken and the tests having the critical regions (a) 𝐶1 = {𝑥 ⩾ .7} and 

(b) 𝐶2 = {. 8 ⪕ 𝑥 ⪕ 1.3} obtain the profanities of two types error ∝ and 𝛽 

Soln : (a)                                                              𝐶1 = {𝑥 ⩾ .7} 

                                                                           ∝= 𝑃{𝑅𝑎𝑗𝐻𝑂/𝜃=𝜃𝑂} 

                                                                               𝑃[𝑋 ⩾ .7/𝜃=1] 

= ∫ 𝑖 𝑑𝑥 = .3
1

7

 

                                                                          𝛽 = 𝑃{sec𝐻0/𝜃=𝜃𝑖} 

= ∫
1

2
𝑑𝑥

.7

0

 

= 35 

(b)                                                                          𝐶2 = {. 8 ⪕ 𝑥 ⪕ 1.3} 

                                                                            ∝= 𝑃{. 8 ⪕ 𝑥 ⪕ 1.3/𝜃 = 1} 

= ∫ 1. 𝑑𝑥 = 2
1

.8

 

                                                                     1 − 𝛽 = 𝑃{. 8 ⪕ 𝑥 ⪕ 1.3/ 𝜃=2} 

= ∫
1

2
𝑑𝑥 = .25

1.3

.8

 

Or                                                                                𝛽 = .75 

Example Let x have a Binomial distribution 𝐵(10, þ) for which  

𝑓(𝑥, þ) = (
10
𝑥
) þ𝑥(1 − þ)10−𝑥 , 𝑥 = 0,1, … .10 

One observation x is taken for testing 𝐻0 ∶ þ =
1
2⁄  against 𝐻1: þ =

1
4⁄ . Find ∝ 𝑎𝑛𝑑 𝛽 for the test 

which rejects 𝐻0 when x≤3. 
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Soln                                                         ∝= 𝑃{𝑥 ≤ 3/þ=1 2⁄ } 

=∑(
10
𝑥
)

3

𝑥=0

(
1

2
)
𝑥

(
1

2
)
10−𝑥

 

=
11

64
 

                                                                𝛽 = 1 − 𝑃{𝑥 ≤ 3 þ=1 4⁄ } 

1 −∑(
10
𝑥
)

3

𝑥=0

(
1

4
)
𝑥

(
3

4
)
10−𝑥

 

= 1 − 31.
38
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Example Let x have a Poison distribution 𝑃(𝜆) and it is required to test the hypothesis 𝐻𝑂: 𝜆 = 1vs 

𝐻𝑖: 𝜆 = 2. One observation is taken and a test is considered which reject 𝐻𝑂  when X⩾3 . Find  ∝, 𝛽  

Soln: we have                                                   ∝= 𝑃(𝑋 ≥ 3/𝜆 = 1} 

                                                                                 = 1− ∑
𝑒−1

𝑥!
2
𝑋=0  

= 1− [
1

𝑒
+
1

𝑒
+
1

2𝑒
] = 1 −

5

2𝑒
 

𝛽 = 𝑃(𝑋 ≥ 3/𝜆 = 2} 

=∑
𝑒−22𝑥

𝑥!

2

𝑥=0

 

=
1

𝑒2
[1 + 2 + 2] 

=
5

𝑒2
 

Now we are in a positions to power a the over which helps us to obtain MP tests of a sample 

hypothesis against a simple alternative. In some special situations, this also gives a UMP test when 

the alternation is composite.  

Let us suppose that we are testing a simple hypothesis against a simple alternative  
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𝐻𝑜 : 𝜃 = 𝜃𝑜  

Us                                                                                𝐻1: 𝜃 = 𝜃1(≠ 𝜃𝑜) 

Theorem (Neyman- Pearson Lemma) 

 let the like hood of the sample E=(𝑋1,… , 𝑋𝑛) under 𝐻𝑜  and 𝐻𝑖be 

𝐿(𝜃𝒿) = 𝐿(𝜃𝒿 , 𝑋1, … , 𝑋𝑛) 

=∏𝑓(𝑋𝑖 ,

𝑛

𝐿=1

𝜃𝒿), 𝒿 = 0,1 

Let T be a test of size∝,for which the cr. region W is defined by  

𝑊 = {𝐸/
𝐿(𝜃𝐼)

𝐿(𝜃0)
⩾ 𝑒} 

Where e is a constant determined by the size condition  

                                                                              𝑃{𝐸 𝜖𝑊/𝜃0}=∝ 

Then T is a MP of size ∝for testing  𝐻0 against 𝐻𝐼  

Prof Let us write  

𝐿0 = 𝐿(𝜃𝑜)𝑎𝑛𝑑 𝐿𝑖 = 𝐿(𝜃𝑖) 

So that the size and power of any test T with Cr. Regain W are follows: 

Size of                                          𝑇 = ∫ 𝐿0 𝑑𝑥 𝑎𝑛𝑑 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑇 = ∫ 𝐿𝑖  𝑑𝑥𝑤𝑊
 

Where                                                              𝑑𝑥=𝑑𝑥1𝑑𝑥2……𝑑𝑥𝑛 

 

 Consider the test T (having cr. Region w) and other test T (having is Region since both W are of 

size ∝ we have w) 

∫ 𝐿𝑜𝑑𝑥 =∝= ∫ 𝐿𝑜𝑑𝑥 − (1)
 

𝑤

 

𝑤
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                                                                     W         W1      W2        W3 

Let                                                                
𝑊1 = 𝑊 −𝑊 ∩𝑊
𝑊2 = 𝑊 ∩𝑊
𝑊3 = 𝑊 −𝑊

 

We have using (i), 

∫ 𝐿𝑂𝑑𝑥
 

𝑤1

= ∫ 𝐿𝑂𝑑𝑥 −∫ 𝐿𝑜𝑑𝑥
 

𝑊2

 

𝑊

 

= ∫ 𝐿𝑂𝑑𝑥 − ∫ 𝐿𝑂𝑑𝑥
 

𝑤2

 

𝑤

= ∫ 𝐿0𝑑𝑥
 

𝑊3

− (𝑖𝑖) 

Sine 𝑊1  ⊂ 𝑊
∗ and 𝑊3  ⊄   𝑊

∗ we have, by definition of 𝑤𝛾  and using (i) 

∫ 𝐿𝑖𝑑𝑥 ⩾ 𝑐∫ 𝑙𝑜𝑑𝑥 − (𝑖𝑖)
 

𝑤𝑖

 

𝑤𝑖

 

And                                                ∫ 𝐿𝑖𝑑𝑥 < 𝑐 ∫ 𝐿𝑜𝑑𝑥 = 𝑐 ∫ 𝐿𝑜𝑑𝑥         − (𝑖𝑖𝑖)
 

𝑤1

 

𝑤3

 

𝑤3
 

Therefore ,from (ii) $(iii) we get  

∫ 𝐿𝑖𝑑𝑥 ⩾ ∫ 𝑙𝑖𝑑𝑥                 − (𝑖𝑣)
 

𝑤3

 

𝑤1

 

Adding ∫ 𝐿𝐼𝑑𝑥
 

𝑊2
  on both sides of (iv) we get  

∫ 𝐿 𝑖𝑑𝑥 ⩾ ∫ 𝐿𝑂𝑑𝑥
 

𝑤3∪𝑤2

 

𝑤1∪𝑤2

 

Or                                                                    ∫ 𝐿 𝑖𝑑𝑥 ∫ 𝐿𝑂𝑑𝑥
 

𝑤

 

𝑤
  

Or 𝑃𝑟(𝑅𝑒𝑗𝐻𝑜/𝜃=𝜃𝑖) 

Or 𝑃𝑟(𝜃𝑖) ⩾ 𝑃𝑟(𝜃𝑖) 

Which shows that T is more powerful then T any other test of size ∝ Hence T is the MP test  

Remarks (1) The constant C for the MP test is determined by using the size condition  

∫ 𝐿𝑜𝑑𝑥
 

𝑤

=∝ 

Usually, a unique value of C is obtained when the 𝑟. 𝑣 has a continuous distribution. 
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(2) When X is a discrete 𝑟. 𝑣. the constant C may not be unique. What is more important is that we 

may not be able to find a MP critical region with expect size ∝. To get rid of the difficultly the cr. 

Region is defined by the following   

{
  
 

  
 𝑅𝑒𝑗  𝐻𝑂 𝑖𝑓      

𝐿(𝜃1)

𝐿(𝜃2)
 > 𝑐

𝑅𝑒𝑗 𝐻𝑂𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 𝑟 𝑖𝑓 
𝐿(𝜃1)

𝐿(𝜃2)
 = 𝑐

𝐴𝑐𝑐 𝐻𝑂  𝑖𝑓 
𝐿(𝜃1)

𝐿(𝜃2)
> 𝑐

 

Then the size of test is               𝑃𝑜 {
𝐿(𝜃1)

𝐿(𝜃𝑜)
> 𝑐} + 𝑟𝑃𝑜 {

𝐿(𝜃1)

𝐿(𝜃𝑜)
= 𝑐} =∝ 

To any given ∝, 𝑟 can be determined. Such a test is called the a randomized test   

Example Let (𝑥1, . . 𝑥5) be a random sample from HO Bernoulli .distribution  

𝑓(𝑥, 𝜃) = 𝜃𝑥(1 − 𝜃)1−𝑥 , 𝑥 = 0,1(0 < 𝜃 < 1) 

Let us test 𝐻𝑂  𝜃 = 6 us 𝐻1: 𝜃 = 𝜃1(> .6). The MP test has cr. Region {∑ 𝑥𝑖 ⩾ 𝑐
5
1 } 

Now ∑ 𝑥𝑖
5
1  has Bernoulli. distribution B(5,𝜃)  

From the tables of Bernoulli Distribution we can to tabulate 𝑃𝑜{∑ 𝑥𝑖 ⩾ 𝑐
5
1 / 𝜃 = .6} us follows 

C P(∑ 𝑥𝑖 ⩾ 𝑐
5
1 ) PO 

1 0.01024 1.00000 

2 0.23040 0.98976 

3 0.34560 0.68256 

4 0.25420 0.33696 

5 0.07776 0.07776 

 

As such, no non-randomized MP test of exact size∝ .05 or 01 exists. However, the randomized MP 

test of size .35 is given by  
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{
 
 
 
 

 
 
 
 
𝑅𝑎𝑗 𝐻𝑂  𝑖𝑓 ∑𝑥𝑖    >

5

1=𝑖

3

𝑅𝑎𝑗 𝐻𝑂  𝑤𝑖𝑡ℎ  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 
. 01304

. 34560
 𝑖𝑓∑𝑥𝑖 = 3

5

1=𝑖

𝐴𝑐𝑒 𝐻𝑂  𝑖𝑓∑𝑥𝑖 = 3

5

1=𝑖

 

 

(3) Suppose we test the simple hypothesis 𝐻𝑂 : 𝜃 > 𝜃𝑜against a composite alternation 𝐻𝑖 : 𝜃 ≠ 𝜃𝑜 or 

𝐻𝑖: 𝜃 > 𝜃𝑜 or 𝐻𝑖: 𝜃 < 𝜃𝑜 if the MP test for  𝐻𝑂 : 𝜃 = 𝜃𝑜 a gains 𝐻𝑖: 𝜃 = 𝜃𝑖given by the NP lemma dose 

not depend on 𝜃𝑖 ,the same test with be MP for all alternative values of 𝜃 and, therefore it will be 

a.UMP test. 

Example (1) Let x have a Poisson distribution 𝑃(𝜆)having þ. m . 𝑓 

𝑓(𝑥, 𝜆) =
𝑒−𝜆𝜆𝑥

𝑥𝑖
, 𝑥 = 𝑜, 1,2 

We want to test                                                  𝐻𝑖 ∶ 𝜆 = 𝜆0 

Against                                                                       𝐻𝑖 ∶ 𝜆 = 𝜆1 

We have  

𝐿(𝑜) =∏𝑓(𝑥,

𝑛

𝑖

𝜆) = 𝑒−𝑛𝜆𝜆∑ 𝑥𝑖
𝑛
𝑖 /∏𝑥𝑖

𝑛

𝑖

 

Therefore, the MP test has the cr region W given by  

                                                                           𝑊 = {
𝐿(𝜆1)

𝐿(𝜆0)
⩾ 𝐶} , 𝑖, 𝑒.  inside W  we have 

𝐿(𝜆1)

𝐿(𝜆0)
= 𝑒−𝑛(𝜆1−𝜆0) (

𝜆1
𝜆0
)∑𝑥𝑖

𝑛

𝑖

⩾ 𝐶 

Or                                                          – 𝑛(𝜆1 − 𝜆0) + (∑𝑥𝑖)𝑙𝑜𝑔(
𝜆1

𝜆0
) ⩾ 𝐶 

Or                                                                                 ∑ 𝑥𝑖
𝑛
1 ⩾ 𝑘 

Where                                                                          𝓀 =
𝑐+𝑛(𝜆1−𝜆0)

log (𝜆1/𝜆0)
 

𝑤 = {∑𝑥𝑖 ⩾ 𝓀

𝑛

𝑖

} 
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We know that ∑ 𝑥𝑖
𝑛
𝑖  has Poisson distribution 𝑃(𝑛𝜆) so that k can be determined by solving  

                                                                            𝑃(∑ 𝑥𝑖
𝑛
𝑖 ⩾ 𝓀 /λ=𝜆0) =∝ 

Remarks: (i) When 𝜆1 < 𝜆0 the MP test will be given by {∑ 𝑥𝑖
𝑛
𝑖 ⪕ 𝓀} 

(ii) Sine the cr region does not depend on the value of 𝜆1 there are UMP for the alternative 𝐻𝑖: 𝜆 >

𝜆0 as 𝐻𝑖 : 𝜆 < 𝜆0, respectively. 

(iii)For getting a MP test for an exact size ∝ we may have to use randomized test 

(2) Let X have an exponential distribution  

𝑓(𝑥, 𝑜) = 𝜃𝑒−𝜃𝑥  (𝑥 ⩾ 𝑜) 

We want to test                                                            𝐻𝑜: 𝜃 = 𝜃𝑜 

Us                                                                                   𝐻𝑖 : 𝜃 = 𝜃𝑖(< 𝜃𝑜) 

We have                                                         𝐿(𝜃) = ∏ 𝑓(𝑥, 𝑜) = 𝜃𝑒
𝑛−𝜃 ∑ (𝑥𝑖−𝜇)

2𝑛
𝑖𝑛

𝑖  

Therefore, the MP test has the critical region W defined by 

                                                                              𝑊 = {
𝐿(𝜃𝑖)

𝐿(𝜃0)
⩾ 𝑐} 

𝑖, 𝑒  Inside W                                                  
𝐿(𝜇𝑖)

𝐿(𝜇𝑂)
=

𝑒
−

1

2𝜎2 ∑ (𝑥𝑖−𝜇𝑖)
2𝑛

𝑖

𝑒
−

1

2𝜎2 ∑ (𝑥𝑖−𝜇𝑜)
2𝑛

𝑖

⩾ 𝑐 

Or                                                                    𝑒
−

1

2𝜎2[∑ (𝑥𝑖 − 𝜇𝑖)
2 − ∑ (𝑥𝑖 − 𝜇𝑜)

2𝑛
𝑖 ]𝑛

𝑖 ⩾ 𝑐 

Or                                                                     [∑ (𝑥𝑖 − 𝜇𝑜)
2𝑛

𝑖 − ∑ (𝑥𝑖 − 𝜇𝑖)
2]𝑛

𝑖 ⩾ 2𝜎2 log 𝑐 

Or                                                                        2(𝜇𝑖 − 𝜇𝑜) ∑ 𝑥𝑖
𝑛
𝑖 ⩾ 2𝜎2 log 𝑐 + (𝜇1

2 − 𝜇0
2)𝑛 

Or                                                                              
𝑖

𝑛
∑ 𝑥𝑖
𝑛
𝑖 ⩾

𝜎2𝑙𝑜𝑔𝑐

𝑛(𝜇𝑖−𝜇𝑜)
+
𝜇𝑖+𝜇𝑜

2
(
𝑠𝑖𝑛𝑐𝑒
𝐻, 7𝜇𝑜

) 

Or                                                                                                    𝑥̅ ⩾ 𝓀 

Whose  𝓀 = 𝑟, ℎ, 𝑠 

: MP test is given by W={𝑥̅ ⩾ 𝓀} Since 𝑥̅ ⩾ 𝑁(𝜇, 𝜎
√𝑛
⁄ ) we can determine  
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GRAPH HERE 

𝑃[𝑍 ⩾ 𝓀∝] =∝ 

𝓀∝ Is called the upper ∝ % point of N (O,1) 

𝓀∝ Is called the lower ∝ % point of N (O,1) 

𝓀 by solving  

𝑃𝜇𝑜{𝑥̅ ⩾ 𝓀} =∝ 

Or                                                                         𝑃𝜇𝑜 {
𝑥̅⩾𝜇𝑜

𝜎√𝑛
⩾

𝓀−𝜇𝑜

𝜎√𝑛
} =∝ 

Or                                                                               𝑇𝜇𝑜 {𝑧 ⩾
𝓀−𝜇𝑜

𝜎√𝑛
} =∝ 

Under  𝐻𝑜 , 𝑧 has N (o,1)and  the tables of standard normal distribution provider the value of 

𝓀∝such  that   𝓀∝ =
𝓀−𝜇𝑜

𝜎√𝑛
 or 𝓀 + 𝜇𝑜 + 𝓀∝

𝜎

√𝑛
 

Remark (1) the power of the MP test given above is  

𝑃𝜇𝑖{𝑥̅ ⩾ 𝓀} 

𝑃𝜇𝑖 {
𝑥̅ − 𝜇𝑖

𝜎√𝑛
⩾
𝓀 − 𝜇𝑖

𝜎√𝑛
} 

𝑃𝜇𝑖 {𝑧 ⩾
√𝑛(𝜇𝑜 − 𝜇𝑖)

𝜎
+ 𝓀∝} 

Since  (𝜇𝑜 − 𝜇𝑖) < 𝑜 ,it shows that the power  is an impressing function of n  

(ii) If 𝜇𝑖 < 𝜇𝑜  the MP test can be shown to have the critical region {𝑥̅ ⩾ 𝓀} where 𝓀 = 𝜇𝑜 + 𝓀∝
𝜎

√𝑛
 

such that 𝑃{𝑍 ⪕ 𝓀∝} =∝ for a standard normal 𝑟, 𝑣(𝑖𝑛 𝑝𝑎𝑐𝑡 𝓀∝ = −𝓀∝) 

(iii) We observe that the MP test of 𝐻𝑜: 𝜇 = 𝜇𝑜 us 𝐻𝐼 : 𝜇 = 𝜇𝑖(> 𝜇𝑜) has a cr region which dose not 

depend on 𝜇𝑖the same test will be UMP for testing 𝐻𝑜: 𝜇 = 𝜇𝑜 against 𝐻𝐼 : 𝜇 > 𝜇𝑜 Similarly the MP 

test 𝐻𝑜: 𝜇 = 𝜇𝑜 against 𝐻𝐼 : 𝜇 = 𝜇𝑖(> 𝜇𝑜)  is UMP for testing 𝐻𝑜: 𝜇 = 𝜇𝑜 against𝐻𝐼: 𝜇 < 𝜇𝑜  

However it can be shown that there is no test which is UMP for𝐻𝑜: 𝜇 = 𝜇𝑜  against𝐻𝐼 : 𝜇 ≠ 𝜇𝑜  

(4) Let X have a normal distribution  𝑁(𝜇, 𝜎) where  𝜇 is a known constant  
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We want to test  

𝐻𝑜 ∶ 𝜎 = 𝜎𝑜 

Us                                                                             𝐻𝑖 ∶ 𝜎 = 𝜎𝑖(> 𝜎𝑜) 

We have  

𝐿(𝜎) =
1

(2𝜋)𝑛/2𝜎𝑛
𝑒
−
1
2𝜎2

∑ (𝑥𝑖−𝜇)
2𝑛

𝑖  

Therefore the MP test has the cr region w depend by 𝑊 = {
𝐿(𝜎𝑖)

𝐿(𝜎𝑜)
⩾ 𝑐}   

𝑖, 𝑒  inside W 

𝐿(𝜎𝑖)

𝐿(𝜎𝑜)
= (

𝜎𝑜
𝜎𝑖
)
𝑛

𝑒−∑ (𝑥𝑖−𝜇)
2𝑛

𝑖 (
1

21
𝜎2 −

1

20
𝜎2) ⩾ 𝑐 

Or                                                      ∑ (𝑥𝑖 − 𝜇)
2𝑛

𝑖 (
1

21
𝜎2 −

1

20
𝜎2) ⩾ log 𝑐 (

𝜎𝑖

𝜎𝑜
)
𝑛

 

Or                                                                        ∑(𝑥𝑖 − 𝜇)
2 ⩾ 𝓀(𝑠𝑖𝑛𝑐𝑒 𝜎1 > 𝜎𝑜) 

Where                                                                           𝓀 =
2{log 𝑒+𝑛𝑙𝑜𝑔(

𝜎𝑖
𝜎𝑜
)]

(
1

𝜎𝑜
2−

1

𝜎1
2)

 

MP test cr region is given by                               𝑊 = {∑ (𝑥𝑖 − 𝜇)
2 ⩾ 𝓀𝑛

𝑖 } 

Since ∑
(𝑥𝑖−𝜇)

2

𝜎2
𝑛
𝑖 ~𝑥𝑛

2 we can determine 𝓀by solving  

𝑃𝜎𝑜 {∑(𝑥𝑖 − 𝜇)
2 ⩾ 𝓀

𝑛

𝑖

} =∝ 

Or                                                                      𝑃𝜎𝑜 {∑
(𝑥𝑖−𝜇)

2

𝜎2
⩾

𝓀

𝜎0
2

𝑛
𝑖 } =∝ 

Or                                                                               𝑃𝜎𝑜 {𝛾 ⩾
𝓀

𝜎0
2} =∝ 

Where 𝑌~𝑥𝑛
2 

From the table of 𝑥𝑛
2 we can find 𝓀∝such that 𝑃{𝛾 ⩾ 𝓀∝} =∝ so that 𝓀 = 𝜎0

2𝓀∝ 

Remark (i) the power if the test is given by  
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𝑃𝜎𝑜 {∑(𝑥𝑖 − 𝜇)
2 ⩾ 𝓀

𝑛

𝑖

} 

= 𝑃𝜎1 {
∑(𝑥𝑖 − 𝜇)

2

𝜎1
2 ⩾

𝓀

𝜎1
2} 

= 𝑃𝜎1 {𝑌 ⩾
𝜎0
2

𝜎1
2𝓀∝} 

Where 𝑌~𝑥𝑛
2 

(ii)If 𝜎1 < 𝜎0the MP test can be shown to have the cr region {∑ (𝑥𝑖 − 𝜇)
2 ≤ 𝓀′𝑛

𝑖 } 

(iii)Since the MP test of 𝐻0: 𝜎 = 𝜎𝑜us 𝐻𝑖 : 𝜎 = 𝜎1(> 𝜎𝑜) dose not depend on 𝜎𝑖it is UMP for testing 

𝐻0: 𝜎 = 𝜎𝑜 against  𝐻𝑖 : 𝜎 > 𝜎𝑜 Similarity the MP test for 𝐻0: 𝜎 = 𝜎𝑜 against 𝐻𝑖 : 𝜎 > 𝜎1(> 𝜎𝑜)is UMP 

test for 𝐻0: 𝜎 = 𝜎𝑜 against𝐻𝑖: 𝜎 < 𝜎𝑜  

However, no UMP test exists for alternative  𝐻1: 𝜎 ≠ 𝜎𝑜  

(5) Let X have the distribution with þ, 𝑑, 𝑓  

𝑓(𝑥, 𝑜) = 𝜃𝑥𝜃−1(0 ≤ 𝑥 ≤ 1) 

We want to test  

𝐻0 ∶ 𝜃 = 𝜃0 

Against                                                                        𝐻𝑖 ∶ 𝜃 = 𝜃1(> 𝜃0) 

We have                                                                        1(𝜃) = 𝜃𝑛[∏𝑥𝑖]
𝜃−1 

Therefore, the MP has the cr region W={
𝐿(𝜃𝑖)

𝐿(𝜃0)
⩾ 𝐶} 𝑖, 𝑒 𝑖𝑛𝑠𝑖𝑑𝑒 𝑊 

(
𝜃𝑖
𝜃0
) 𝑛[∏𝑥𝑖]

𝜃𝑖−𝜃𝑜 ⩾ 𝑐

𝑛

𝑖=1

 

Or∏ 𝑥𝑖 ⩾ 𝓀
𝑛
𝑖=1 where 𝓀 = [𝑐 (

𝜃𝑜

𝜃𝑖
) 𝑛] 1/𝜃𝑖 − 𝜃0) 

The MP test has cr region  

{∏𝑥𝑖 ⩾ 𝓀

𝑛

𝑖=𝑖

} 
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Or                                                    {–∑ 𝑙𝑜𝑔𝑥𝑖 ≤ 𝓀𝑜
𝑛
𝑖=𝑖 } where 𝓀𝑜 = − log𝓀 

If can be shown that 𝛾 = (20)(∑ 𝑙𝑜𝑔𝑥𝑖
𝑛
𝑖=𝑖 ) has 𝑥2𝑛

2  therefore the constant 𝓀𝑜(and have 𝓀) can. Be 

determined by solving  

                                                                                  𝑃{𝛾 ⪕ (2𝜃𝑂)𝓀𝑂} =∝  

Where 𝛾~𝑥2𝑛
2  

Remark In the same manner for 𝐻𝑜 ∶ 𝜃 = 𝜃𝑂  against  𝐻𝑖: 𝜃 = 𝜃1(< 𝜃𝑂) MP test can be found. 

{𝑥
𝑓, (𝑥)

𝑓𝑜, (𝑥)
⩾ 𝑐} 

Or                                                                                 √
2

𝑥

𝑒𝑥
2/2

1+𝑥2
⩾ 𝑎 

Since L.H.S is non decreasing for |x| the cr region is {|𝑥| ⩾ 𝓀}  

Where 𝓀 is dreaming from the size condition  

                                                                                        𝑃𝐻𝑂  {|𝑥| ⩾ 𝓀} =∝ 

Since X~N (O,1) Under 𝐻𝑂 , 𝓀 = 𝑍∝/2 

(7) Suppose X has the following distribution under 𝐻𝑂  and 𝐻𝑖  will here the critical region 

                                                                                    { x : √
𝜋

2
𝑒|𝑥|+

𝑥²
2⁄   ≥ 𝐶 } 

Since 
f1(x)

f0(x)
 is a non-decreasing function of |𝑥|, the critical region is { |𝑥|  ≥ k} where k= 𝑧𝛼

2⁄
  

(8) Suppose x has the following distribution 

                                                                                 H0 : f0(x) = 
1

√2𝜋
𝑒
𝑥²

2⁄  ; -∞< x<+∞ 

                                                                                      H1 : f1(x) =
2

Г
1

4

𝑒−𝑋
4
 ; -∞< x<+∞ 

Let us take a single observation. The MP test of H0 Vs H1 has the critical region 

{ x: 
f1(x)

f0(x)
 ≥ C } 

Or  𝑒−𝑥
4+𝑥² 2⁄   ≥C’ 

Since L.H.S. is a non-increasing function of |𝑥|, the critical region is {|𝑥|  ≤ k} where  k = 𝑧(1−𝛼)
2⁄

 

(9) Suppose X has the following distribution  

                                                          H0: f0(x) = {
4𝑥 ; 0 < 𝑥 < 1/2

4(1 − 𝑥); 1/2 ≤ 𝑥 < 1
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H1: f1(x) = 1 ; 0<x<1 

Let us take a single observation. The MP test of H0 VS H1has the critical region given by  

 
f1(x)

f0(x)
 ≥ C 

Where 
f1(x)

f0(x)
 = {

1

4𝑥
; 0 < 𝑥 < 1/2

1

4(1−𝑥)
; 1/2 ≤ 𝑥 < 1

 

We see that 
f1(x)

f0(x)
 ≥C 

If either x <k1 or x>k2 

Hence MP or region is 

                                                                   {  x <k1 }U{ x>k2 } 

The size of the test is 𝑃H0 { x <k1}U{ x>k2} + 𝑃H0{x>k2} = α 

For simplicity we can take k₂ = 1-k1 

(10) Let X have the rectangular distribution R(0,ϴ) having p.d.f. 

  f(x,ϴ) = 
1

𝛳
 ; 0≤x≤ϴ 

We want to test  

                                                                        H0: ϴ = ϴ0 Vs 

                                                                        H1:ϴ = ϴ1(>ϴ0) 

We have 

                                                                 L(ϴ) = 
1

𝛳𝑛
 I[0,X(n)](X(1))I[0,ϴ](x(n)) 

Therefore the MP test has the critical region W ={
𝐿(ϴ0)

𝐿(ϴ1)
 ≥C} 

Now, 

                                                                     
𝐿(ϴ0)

𝐿(ϴ1)
 = (

ϴ0

 ϴ1
) 𝑛 

𝐼[0,𝛳1](𝑥(𝑛))

𝐼[0,𝛳0](𝑥(𝑛))
 

                                                                 = {
(

ϴ0

 ϴ1
) 𝑛 𝑓𝑜𝑟 0 ≤ 𝑥(𝑛) ≤ 𝛳0

∞ 𝑓𝑜𝑟 𝛳0 ≤ 𝑥(𝑛) ≤ 𝛳1
  

This shows that 
𝐿(ϴ0)

𝐿(ϴ1)
 is an increasing function of 𝑥(𝑛) and, therefore 

                                                                                 
𝐿(ϴ0)

𝐿(ϴ1)
 ≥C  𝑥(𝑛) ≥k 

Hence the MP test has the critical region  

                                                                                       { 𝑥(𝑛) ≥k} 

The value of k is determined by the size condition 

                                                                              P { 𝑥(𝑛) ≥k/𝛳0} = α 

Since 𝑥(𝑛) has p.d.f. f𝑥(𝑛)(Y)= 
𝑛𝑦𝑛−1

𝛳𝑛
 ; 0≤y≤ϴ 

We have                                                                 
𝑛

𝛳𝑛
∫ 𝑦𝑛−1𝑑𝑦
𝛳0
𝑘

 = α 

Remark: the above test is UMP for H0: ϴ=ϴ0 against H1:ϴ>ϴ0  
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As we have remarked, UMP test may not always exist. Therefore we for their restrict the class of 

tests by considering unbiased tests (defined below) and then try to obtain UMP test in the class of 

unbiased tests. If such a test exists we call it uniformly not powerful unbiased test (UMPU test)  

Definition Suppose we are testing a sample hypothesis Hϴ: 𝜃 = 𝜃0 against a conqurite alternative   

𝐻𝑖(𝑚𝑎𝑦 𝑏𝑒 𝜃 ≠ 𝜃0𝑜𝑟 𝜃 > 𝜃0 𝑜𝑟 𝜃 < 𝜃0)  A test T is called unbiased if  

𝑃𝑜(𝑇) ⩾∝ for all 𝜃 𝜖𝐻𝑖  

Where ∝ is the size of T 𝑖, 𝑒. 𝑃𝑜(𝑇) =∝ 

Remark:  Suppose 𝜃 = 𝜃1 is one of the alternative value of 𝜃. If the test is not unbiased it may 

happen that 𝑃𝑜(𝑇) <∝= 𝑃00(𝑇) which means that the probability of rejecting  𝐻𝑜  when it is false  is  

less  then  the  probability  if  rejecting 𝐻𝑜   when it is true  if the test is  unbiased  it will not  happen. 

Theorem A MP test or UMP test is unbiased. 

Prof Let T be a MP (or UMP) test of size ∝. Consider another test T which rejects the null hypothesis 

HO: 𝜃 = 𝜃0 with probability ∝ irrespective of the sample outcome. We may just toss a coin for 

which the probability of is ∝  and decide to reject the null hypothesis Hϴ if we get ∝ , irrespective if 

the sample values obtained. Then 

                                                                    𝑃𝑇{𝑅𝑒𝑗𝑒𝑐𝑡𝐻𝑜/HO is 𝑡𝑟𝑢𝑒} =∝ 

So that the size of the test T=∝. Also the power of test T is also∝, since  

                                                                 𝑃𝑇{𝑅𝑒𝑗𝑒𝑐𝑡𝐻𝑜/HO is 𝑓𝑎𝑙𝑠𝑒 } =∝ 

But T being MP (or UMP) is such that  

                                                                          𝑃𝑇 (𝜃)  ⩾ 𝑃𝑇(𝜃) for 𝜃 𝜖 Hi 

Or                                                                            𝑃𝑇 (𝜃) ⩾∝ for 𝜃 ≠ 𝜃0 

Remark: It may be shown that the following tests are UMPU for two sided alternative 𝐻𝑖 ∶ 𝜃 ≠ 𝜃0 in 

example 1,2 and 3 

For example 1, UMPU test is {𝑥̅ ⩾ 𝓀1𝑜𝑟𝑥̅ ⪕ 𝓀2}  

For example 2, UMPU test is{[𝑥] ⩾ 𝓀} 

For example 3, UMPU test is{∑(𝑥𝑖 − 𝜇)
2 ⩾ 𝓀1 𝑜𝑟∑(𝑥𝑖 − 𝜇)

2 ⪕ 𝓀2} 

 The constant 𝓀,𝓀1, 𝓀2 are determined from size condition 

Now  we  consider a  produce  for  constructing  tests  that  has  some  intuitive  appeal  and  that . 

Frequently, though not always, leads to UMP or UMPU test. Also the produce leads to test that have 

decided large sample properties 

Suppose we are given a sample (𝑥1, … , 𝑥𝑛) from a distribution with þ, 𝑑, 𝑓 𝑓(𝑥, 𝜃 ) (where 𝜃 may be 

a vector) and we deice to test the null hypothesis 𝐻𝑜 ∶ 𝜃 𝜖 𝑤(⊂ 𝛺) against the alternative 

hypothesis 𝐻𝑖 ∶ 𝜃 𝜖 𝑤(⊂ 𝛺)   where 𝛺  is the parameter space, 

 

 

The likelihood function of the sample is given by  

𝐿(𝜃) = 𝑙(𝜃, 𝑥1, … , 𝑥𝑛) =∏𝑓(𝑥𝑖 ,

𝑛

𝑖=1

𝜃) 

Define the likelihood ratio  
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𝜆 =

max 𝐿(𝜃)
𝜃 𝜀𝜔

max𝐿(𝜃)
𝜃 𝜀𝛺

 

Where 
max   𝐿(𝜃)
𝜃 𝜀𝜔

 denotes the maximum of the likelihood function when 𝜃 is restricted to values in 

w and max 𝐿(𝜃) denotes the maximum of the likelihood for when 𝜃  takes all possible values in𝛺  

Obviously,  0 ≤ 𝜆 ≤ 1 and λ is also to 1 of the sample shows that 𝜃 lies actually in 𝛚. 

Definition   The likelihood ratio test of 𝐻𝑜  against 𝐻𝑖  has the critical region  

𝑤 = {𝜆 ⪕ 𝜆𝑜} 

When 𝜆𝑜 is determined by the size condition 

                                                                         
Sup  
𝜃𝜖𝐻𝑜

𝑃{𝜆 ⪕ 𝜆𝑜/𝜃𝜖𝐻𝑜} =∝ 

Remark (1) For testing a simple hypothesis against a simple alternative likelihood ratio test is 

equivalent to the test given by the Neyman –Pearson lemma. 

(ii) if  a sufficient  statistics  exists  the L.R test  is  a function  of the  sufficient  statistics. 

(iii) Under some regularity condition -2 loge λ is asymptotically distributed as a χ2  𝑟. 𝑣. with 

degrees of freedom equal to the difference between the number in 𝛚. 

Example: (1) Let X be a r.v. having a normal distribution  𝑁(𝜇, 𝜎) where 𝜎 (=𝜎𝑜) is known 

We want to test                                                    𝐻𝑂: 𝜇 = 𝜇𝑜  

Against                                                                    𝐻1: 𝜇 ≠ 𝜇𝑜 

We have the likelihood function  

                                                                   𝐿(𝜇) =
1

(𝜎𝑂√2𝜋)
𝑛
𝑒−∑ (𝑥𝑖−𝜇)

2𝑛
𝑖=1 /2𝜎𝑜

2 

Then  

                                                         max
𝐻0

𝐿(𝜇) =  
1

( 𝜎0√2𝜋)
𝑛 𝑒−

∑ (𝑥𝑖−𝜇0)
2/2𝜎0

2𝑛
𝑖  

Since MLE of μ is 𝜇̂ = 𝑥̅ , therefore 

                                                            max
𝜇
𝐿(𝜇) =  

1

( 𝜎0√2𝜋)
𝑛 𝑒−

∑ (𝑥𝑖−𝑥̅)
2/2𝜎0

2𝑛
𝑖  

The LR test critical region is given by                    λ ≤ λ0 

                                                                                                                          

 max
𝐻0

𝐿(𝜇)

max
𝜇

𝐿(𝜇)
 ≤ 𝜆0 

                                                                     Or 
𝑒−

∑ (𝑥𝑖−𝜇0)
2
/2𝜎0

2𝑛
𝑖

𝑒
−∑ (𝑥𝑖−𝑥̅)

2
/2𝜎0

2𝑛
𝑖

 ≤ 𝜆0 

                                                              𝑒
1

2𝜎0
2[∑(𝑥𝑖−𝑥̅)

2−∑(𝑥𝑖−𝜇0)²
≤ 𝜆0 

                                                                 Or 
–𝑛(𝑥̅−𝜇0)²

2𝜎0
2 ≤ log 𝜆0 

                                                                         or  
𝑛(𝑥̅−𝜇0)²

𝜎0
2 ≥ 𝑘 

                                                                         or 
|(𝑥̅−𝜇0)|
𝜎0

√𝑛
⁄

 ≥k’ 
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Remark (i) the above test is not UMP test since there exists other UMP tests for 𝐻1: 𝜇 > 𝜇0and 

𝐻𝑖: 𝜇 < 𝜇0  (II) 
√𝑛(𝑥̅−𝜇𝑜)

𝜎𝑜
~𝑁(0, 𝐼) under 𝐻𝑂  so that  𝑘 can 𝑘 found easily by using size condition  

(2) Let x ~𝑁(𝑂, 𝐼) where both 𝜇 and 𝜎 are unknown we want to test  

𝐻𝑂 : 𝜇 = 𝜇𝑜 

Against                                                                       𝐻𝑖: 𝜇 ≠ 𝜇0 

We have the likelihood for  

𝐿(𝜇, 𝜎) =
1

(𝜎√2𝜋)
𝑒
−
1
2𝜎2

∑ (𝑋𝐼−𝜇)
2𝑛

𝑖  

Under 𝐻𝑂 : 𝜇 = 𝜇𝑜, (given) so the MLE of 𝜎  is  

𝜎 ̂ == √∑
(𝑥𝑖 − 𝜇𝑜)

2

𝑛

𝑛

𝑖

 

In general, 𝑚, 𝑙, 𝑒 of 𝜇 is 𝜇̂ = 𝑥̅ and MLEof 𝜎  is 

𝜎̂ = 𝑠0 = √∑
(𝑥𝑖 − 𝑥̅)

2

𝑛

𝑛

𝑖

 

 Therefore, we have                       max 𝐿(𝜇, 𝜎) =
𝑖

(&𝑜√2𝜋)
𝑛
𝑒−∑(𝑥𝑖−𝜇𝑜)

2
/2&𝑜

2 

=
𝑖

(&𝑜√2𝜋)𝑛
𝑒−

𝑛
2  

And                                                       
max 𝐿(𝜇, 𝜎)

𝜇, 𝜎
=

𝐼

(&√2𝜋)𝑛
𝑒−∑(𝑥𝑖−𝑥̅)

2
/2&2 

=
𝐼

(&√2𝜋)𝑛
𝑒−

𝑛
2⁄  

The L.R test critical region is given by  

𝜆 =

max 𝐿(𝜇, 𝜎)
𝐻𝑜

max 𝐿(𝜇, 𝜎)
𝐻𝑜

⪕ 𝜆𝑂  

Or                                                                                  (
&

&𝑜
)
𝑛

 

Or                                                                                   
&2

&𝑜
2 ⪕ 𝜆′𝑂 

Or                                                                                 
𝑛&𝑜

2

𝑠2
⩾ 𝓀 

Since &𝑜
2 = 𝑛(𝑥̅ − 𝜇𝑜)2 + 𝑛&2the above cr region becomes  

𝑛(𝑥̅ − 𝜇𝑜)2

𝑠2
⩾ 𝓀′ 

Or                                                                            
√𝑛[(𝑥̅−𝜇𝑜)

𝑠2
⩾ 𝓀’’ 

Where                                                           𝑠 =
∑(𝑥𝑖−𝑥̅)

2

𝑛−𝑖
=

𝑛𝑠2

𝑛−𝑖
’ 



59 
 

 
 

It is know that  
√𝑛(𝑥̅−𝜇𝑜)

&
 has t distribution on (𝑛 − 1)𝑑. 𝑓 under 𝐻𝑂  There fore the values of 𝓀 can be 

found from the size condition  

𝑃{|𝑌| ⩾ 𝓀} =∝ 

Where Y~𝑡𝑛−𝑖  

(3) Let X ~N(𝜇, 𝜎) when both 𝜇 and 𝜎 are unknown we want to test  

𝐻𝑂 : 𝜎 = 𝜎𝑂 

Against  

𝐻𝑖 : 𝜎 ≠ 𝜎0 

We have the likelihood function  

𝐿(𝜇, 𝜎) =
1

(𝜎√2𝜋)𝑛
𝑒
−
1
2𝜎2

∑ (𝑥𝑖−𝜇)
2𝑛

𝑖  

Under𝐻𝑂 , the 𝑚, 𝑙, 𝑒 of 𝜇 is 𝜇̂ = 𝑥̅ 

In general, 𝑚, 𝑙, 𝑒 of 𝜇 is 𝜇̂ = 𝑥̅ and 𝑚, 𝑙, 𝑒 of 𝜎 is  

𝜎̂ = 𝑠 = √
∑(𝑥𝑖 − 𝑥̅)

2

𝑛
 

Then we have  

                                                                  
𝑚𝑎𝑥𝐿(𝜇, 𝜎)

𝐻𝑜
=

1

(𝜎𝑜√2𝜋)
𝑛 𝑒

−∑(𝑥𝑖−𝑥̅)
2
/2𝜎𝑜

2 

=
1

(𝜎𝑜√2𝜋)
𝑛 𝑒

−
𝑛
2
𝑠2

𝜎𝑠
2
 

And                                                               
𝑚𝑎𝑥𝐿(𝜇, 𝜎)

𝐻𝑜
=

1

(𝜎𝑜√2𝜋)
𝑛 𝑒−

∑(𝑥𝑖−𝑥̅)
2
/2𝑠2 

=
1

(&√2𝜋)
𝑛 𝑒

−
𝑛
2 

L.R test cr region is given by                          𝜆 =

𝑚𝑎𝑥𝐿(𝜇,𝜎)
𝐻𝑜

𝑚𝑎𝑥𝐿(𝜇,𝜎)

𝜇,𝜎

 <𝜆𝑜 

Or                                                                        (
𝑠𝑜

𝜎𝑜
2)

𝑛

2
(
𝑠𝑜

𝜎𝑜
2−𝐼) < 𝜆𝑜 

Or                                                                  𝓎
𝑛

2𝑒−
𝑛

2
(𝓎−𝑖) < 𝜆𝑜 𝑤ℎ𝑒𝑟𝑒 𝓎 =

𝑠2

𝜎𝑜
2 

We note that 𝓎
𝑛

2𝑒−
𝑛

2
(𝓎−𝑖)has a maximum at 𝓎 = 1 

Therefore 𝜆 < 𝜆𝑜 if and only if 𝓎 ⩾ 𝓀2 or 𝓎 ⩾ 𝓀1 that is the critical region is  

{
𝑠2

𝜎𝑜
2 ⪕ 𝓀2𝑜𝑟

𝑠2

𝜎𝑜
2 ⪕ 𝓀1 } 

{
(𝑛)𝑠2

𝜎𝑜
2 ⩾ 𝓀2𝑜𝑟

(𝑛)𝑠2

𝜎𝑜
2 ⪕ 𝓀1} 

But it is know that 
(𝑛)𝑠2

𝜎𝑜
2 =

∑ (𝑥𝑖−𝑥̅)
2𝑛

𝑖

𝜎𝑜
2  has 𝑥2 distribution on (n-i) 𝑑, 𝑓 using the 𝑥𝑛−𝑖

2 tables and size 

condition we can get the values of 𝓀1and 𝓀2 
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(3a) suppose in example 3 the value of 𝜇(= 𝜇𝑜)is know. Then the L.R cr region because  

                                                                                   {
𝑛𝑠𝑜

2

𝜎𝑜
2 ⩾ 𝑐1𝑜𝑟

𝑛𝑠𝑜
2

𝜎𝑜
2 ⩾ 𝑐2}  

Where                                                                     𝑠𝑜
2 = ∑ (𝑥𝑖 − 𝜇𝑜)

2𝑛
𝑖 /n 

In than case  
𝑛𝑠𝑜

2

𝜎𝑜
2 =

∑ (𝑥𝑖−𝑥̅)
2𝑛

𝑖

𝜎2
  has𝑥𝑛

2  

(4)Let x have an exponential distribution  

𝑓(𝑥, 𝑜) =
1

𝜃
𝑒
−
𝑥
𝜃(𝑥 ⩾ 𝜃) 

We want to test                                                        𝐻𝑜 ∶ 𝜃 = 𝜃0 

Against                                                                        𝐻𝑖 ∶ 𝜃 = 𝜃𝑜  

We have the likelihood function  

𝐿(𝜃) =
1

𝜃𝑛
𝑒−

1
𝜃
∑ 𝑥𝑖 

=
1

𝜃𝑛
𝑒−

𝑛𝑥̅
𝜃  

Then we get                                                                        

 

𝑚𝑎𝑥𝐿(𝜃)
𝐻𝑜

=

{
 

 1
(𝜃𝑜)

𝑛 𝑒
−
𝑛𝑥̅
𝜃𝑜
 𝑓𝑜𝑟𝑥̅>𝜃𝑜

𝑖
(𝑥̅)𝑛 𝑒

−𝑛  𝑓𝑜𝑟𝑥̅⪕𝜃𝑜

 

Also                                                                                 
𝑚𝑎𝑥𝐿(𝜃)

𝜃
=

𝑖

(𝑥̅)𝑛
𝑒−𝑛  

Because 𝑚, 𝑙, 𝑒 of 𝜃 is 𝜃 = 𝑥̅ 

The LR test cr region is given by                                  𝑥 ⪕ 𝜆𝑜  

Where  

𝑥 =

{
 

 
𝑖

(𝜃𝑜)𝑛
𝑒−

𝑖
𝜃
∑𝑥𝑖𝑥̅>𝜃𝑜

𝑖

(𝑥̅)𝑛
𝑒−𝑛 𝑓𝑜𝑟 𝑥̅⪕𝜃𝑜

 

Since 𝓎𝑛𝑒−𝑛(𝓎−𝑖) at lains maximum at  𝓎 − 𝑖 taking 𝓎 =
𝑥̅

𝜃𝑜
 we see that λ=i if  𝓎 = 𝑖 and λ⪕𝜆𝑜for 

𝓎 ⩾ 𝓀(𝑜 < 𝓀 < 𝑖) 

LR test critical region because  

{
𝑥̅

𝜃𝑜
⩾ 𝓀}𝑜𝑟{𝑥̅ ⩾ 𝓀} 

Remark (i) if one take  𝐻𝑖 ∶ 𝜃 = 𝜃𝑜   we shall get the L.R critical region as{𝑥̅ ⩾ 𝓀} in both case of one 

–sided alternation the L.R test are UMP test. 

(2) Since ∑ 𝑥𝑖
𝑛
𝑖  has gamma distribution we can find the value of 𝓀 by using size condition  

(5) Let (𝑥𝑖 , . . 𝑥𝑛) be 𝑎, 𝑟, 𝑠 from 𝑁(𝜇, 𝜎𝑖) and  (𝛾𝑖 , 𝛾𝑛2) be 𝑎, 𝑟, 𝑠 from another 𝑁(𝜇2, , 𝜎2) where two 

samples (distribution) are independent. 
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We want to test                                              

                                                                                        
𝐻𝑜: 𝜇1 = 𝜇2
𝐻𝑖: 𝜇1 ≠ 𝜇2

} 

Where it is assumed that 𝜎1 = 𝜎2(= 𝜎𝑢𝑛𝑘𝑜𝑤𝑛 ) we that the like hood function  

                                                         1(𝜇1, 𝜇2, 𝜎) =
1

(√2𝜋)𝑛𝑖𝑡ℎ𝜎𝑛𝑖𝑡ℎ
𝑒
−

1

2𝜎2
[∑ (𝑥𝑖−𝜇𝑖)

2+∑ (𝓎𝑖−𝜇𝑖)
2]𝑛

𝑖
𝑛
𝑖   

In general the 𝑚, 𝑙, 𝑒 of 𝜇1, 𝜇2 and 𝜎 are 

𝜇𝑖̂ = 𝑥̅ =
𝑖

𝑛1
∑𝑥𝑖 ,

𝑛

𝑖

𝜇2̂ = 𝓎̅ =
𝑖

𝑛2
∑𝓎𝑖

𝑛

𝑖

 

And                                                                 𝜎 𝑜̂ =
𝑛1𝑠1

2+𝑛2𝑠2
2

𝑛1+𝑛2
= 𝑠2(𝑠𝑎𝑦) 

Also                                                 𝑠1
2 =

𝐼

𝑛1
∑ (𝑥𝑖 − 𝑥̅)

2𝑛
𝑖  and𝑠2

2 =
𝐼

𝑛1
(𝓎𝑖 − 𝓎̅)

2 

Therefore  

𝑚𝑎𝑥𝐿(𝜇1, 𝜇2 , 𝜎)
𝜇1, 𝜇2𝜎

=
1

(2𝜋)𝑛1+𝑛2(𝑠2)𝑛1+𝑛2
𝑒−

(𝑛1+𝑛2
2  

Against  the 𝑚, 𝑙, 𝑒 under 𝐻𝑂are  

𝜇1̂ = 𝜇2̂ =
𝑛1𝑥̅ + 𝑛2𝓎̅

𝑛1 + 𝑛2
= 𝑚(𝑠𝑎𝑦) 

And                                                     𝜎 2̂ =
1

𝑛1+𝑛2
[∑ (𝑥𝑖 −𝑚)

2 +∑ (𝑥𝑖 −𝑚)
2𝑛

𝑖
𝑛
𝑖  

=
1

𝑛1 + 𝑛2
[∑{(𝑥𝑖 − 𝑥̅) + (𝑥̅ − 𝑚)}

2 +∑{(𝓎𝑖 − 𝓎̅) + (𝓎̅ − 𝑚)}
2]

𝑛2

𝑖

𝑛1

𝑖

 

=
1

𝑛1 + 𝑛2
[∑(𝑥𝑖 − 𝑥̅)

2 + 𝑛1(𝑥̅ − 𝑚)
2 +∑(𝓎𝑗 − 𝓎̅)

2 + 𝑛2

𝑛2

𝑖

𝑛1

𝑖

(𝓎̅ − 𝑚)}2] 

=
1

𝑛1 + 𝑛2
[∑(𝑥𝑖 − 𝑥̅)

2 +∑(𝓎𝑖 − 𝓎̅)
2 +

𝑛1𝑛2
𝑛1𝑛2

(𝑥̅ − 𝓎̅)2

𝑛2

𝑖

𝑛1

𝑖

] 

= 𝑠𝑜 +
𝑛1𝑛2

(𝑛1 + 𝑛2
(𝑥̅ − 𝓎̅)2 = 𝑠𝑜

2(𝑠𝑎𝑦) 

Therefore                                  
𝑚𝑎𝑥𝐿(𝜇1 , 𝜇2, 𝜎)

𝐻𝑜
=

𝐼

(√2𝜋)𝑛1+𝑛2(𝑠𝑜
2)𝑛1+𝑛2

𝑒−
𝑛1+𝑛2

2  

So that the LR cr region is given by  

𝜆 = (
𝑠𝑜
2

𝑠𝑜
2)  

𝑛1+𝑛2 ⪕ 𝜆𝑜 

Or                                                                                  
𝑠𝑜
2

𝑠𝑜
2 ⪕ 𝓀 

Or                                                                     
(𝑥̅−𝓎)2

(𝑛1+𝑛2)
𝑠2(

𝑖

𝑛1
+

𝑖

𝑛2
)
 

Or                                                                             
(𝑥̅−𝓎)2

𝑠2(
𝑖

𝑛1
+

𝑖

𝑛2
)
 

Where                                                  𝑠2 =
𝑛1𝑠1

2+𝑛2𝑠2
2

𝑛1+𝑛2−2
=

𝑛1+𝑛2

(𝑛1+𝑛2−2)
𝑠2 
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The cr region can be within as  

                                                                             {
[𝑥̅−𝓎̅]

𝑠𝑜√
𝑖

𝑛1
+

𝑖

𝑛2

⩾ 𝓀}  

Since under find 𝓀 such that 𝑃{𝛾 ⩾ 𝓀} =∝ 

Where                                                                  𝛾~𝑡𝑛1+𝑛2−2 

(6)Let (𝑋𝐼 , . 𝑋𝑛𝐼) be 𝑎, 𝑟, 𝑠 from N (𝜇, 𝜎𝑖) and(𝛾1, . 𝛾𝑛2)𝑛 N (𝜇2 , 𝜎2) where two samples (and two 

distributions) are indecent  

We want to test  

Against                                                                 
𝐻𝑂 : 𝜎1 = 𝜎2
𝐻𝑖 ∶ 𝜎1 ≠ 𝜎2

} 

We have the likelihood function  

1(𝜇1, . 𝜇2𝜎
2𝜎) =

1

(2𝜋)𝑛1+𝑛2𝜎1
𝑛1𝜎2

𝑛2 𝑒
−
1
2
[
∑ (𝑥𝑖−𝜇𝑖)

2𝑛1
𝑖

𝜎1
2 +

∑ (𝓎𝑖−𝜇𝑖)
2𝑛2

𝑖

𝜎2
2 ]

 

In general, be 𝑚, 𝑙, 𝑒 of 𝜇1, 𝜇2, 𝜎1, 𝜎2 are 

𝜇1̂ = 𝑥̅, 𝜇2̂ = 𝓎̅, 𝜎1̂ =
1

𝑛1
∑(𝑥𝑖 − 𝑥̅)

2, 𝜎2̂ =
1

𝑛2
∑(𝓎𝑖 − 𝓎̅)

2

𝑛2

𝑖

𝑛1

𝑖

 

So that                                                  = 𝑠1
2(𝑠𝑎𝑦) = 𝑠2

2(𝑠𝑎𝑦) 

max 𝐿(𝜇1 , 𝜇2, 𝜎1, 𝜎2) =
1

(2𝜋)𝑛1+𝑛2(𝑠1
2)

𝑛
2(𝑠2

2)𝑛2/2
𝑒−

𝑛1+𝑛2
2  

Against, the m, l, e under 𝐻𝑂  are  

𝜇1̂ = 𝑥̅, 𝜇2̂ = 𝓎̅, 𝜎1̂ = 𝜎2̂ = 𝜎̂ =
1

𝑛1 + 𝑛2
[∑(𝑥𝑖 − 𝑥̅)

2 +∑(𝓎𝑖 − 𝓎̅)
2

𝑛2

𝑖

𝑛1

𝑖

] 

=
𝑛1𝑠1

2 + 𝑛2𝑠2
2

𝑛1 + 𝑛2
= 𝑠2(𝑠𝑎𝑦) 

So that                                               max 𝐿(𝜇1, 𝜇2, 𝜎1, 𝜎2) =
1

(2𝜋)𝑛1+𝑛2(𝑠2)
𝑛1+𝑛2

2

𝑒−
𝑛1+𝑛2

2  

Therefore, the LR cr region is given by  

𝜆 =
(𝑠1
2)
𝑛1
2 (𝑠2

2)
𝑛2
2

(𝑠2)
𝑛1+𝑛2
2

⪕ 𝜆𝑜 

Or                                                                            
𝑠1
2)
𝑛1
2 (𝑠2

2)
𝑛2
2

(
𝑛1𝑠1

2+𝑛2𝑠2
2

𝑛1+𝑛2
)

𝑛1+𝑛2
2

⪕ 𝜆𝑜 

Or                                                                                   
[
(𝑛1−1)

(𝑛2−1)
𝑓] 

𝑛1
2

[1+
(𝑛1−1)

(𝑛2−1)
𝑓]
𝑛1+𝑛2

2

⪕ 𝜆𝑜  

Where                                                                          𝑓 =
𝑛1𝑠1

2

(𝑛1−1)
/

𝑛1𝑠2
2

(𝑛2−1)
 

Setting 𝑔(𝑓)𝑓𝑜𝑟the 𝐿. 𝐻. 𝑆 of (i) we have 𝓰(o)=o and 𝓰(f)→o∞. Furthermore 𝓰(f) attains its 

maximum  for 
𝑓

𝑚𝑎𝑦
=

𝑛1(𝑛2−1)

𝑛2(𝑛1−1)
,  it is impressing between o and f may and derision in (f may, ∞). 
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Therefore 𝓰(f)⪕ 𝜆𝑜 if  and only if 𝑓 < 𝓀1 or 𝑓 > the LR cr region can be  within as {𝐹 < 𝓀1 𝑜𝑟 𝐹 >

𝓀2} 

Where                                                                             𝐹 =
𝑛1𝑠1

2/(𝑛1−1)

𝑛2𝑠2
2/(𝑛2−1)

 

But under𝐻𝑜 , 𝐹~𝐹𝑛1−1,𝑛2−1 , 

Hence 𝓀1, 𝓀2 can be obtained from the size condition 𝑃{𝑓 > 𝓀1 𝑜𝑟 𝐹 < 𝓀2} =∝whese F~𝐹𝑛1−1,𝑛2−1 

Some distribution:𝑿𝟐, 𝒕 𝒂𝒏𝒅 𝑭    

Definition: A  𝑟, 𝑣. 𝑥 is said to have a Gamma distribution 𝐺(∝, 𝛽) of its  þ. 𝑑. 𝑓. is given by  

𝑓(𝑥) =
𝛽∝

Γ(∝)
𝑥∝−1𝑒−𝛽∝      ;x≥0 

                              = 0             ; 𝑥 < 0      

(∝> 0, 𝛽 > 0) 

We have 𝑚,𝑔, 𝑓 𝑀𝑥(𝑡) = (1 −
𝑡

𝛽
)−∝,           𝑡 < 𝛽     

𝐸(𝑋) =∝/𝛽 

𝑉(𝑋) =∝/𝛽2 

If ∝= 1 we get the exponential distribution  

𝑓(𝑥) = 𝛽𝑒−𝛽𝑥       , 𝑥 ⩾ 0(𝛽 > 0) 

𝐸(𝑋) = 1/𝛽 

𝑉(𝑋) = 1/𝛽2 

If  ∝= 𝑛/2(𝑛 a positive integer) 𝛽 = 1/2 we get the 𝑥2 distribution on 𝑛, 𝑑, 𝑓 where þ, 𝑑, 𝑓 is  

𝑓(𝑥) =
1

2
𝑛
2𝐼(𝑛 2⁄ )

𝑥
𝑛
2
−𝑖𝑒−

𝑥
2 , 𝑥 ⩾ 𝑜 

We have 𝑚,𝑔, 𝑓 𝑀𝑥(𝑡) = (1 − 2𝑡)
−𝑛/2 

𝐸(𝑥) = 𝑛

𝑣(𝑥) = 2𝑛
} 

Definition: A 𝑟, 𝑣 X is said to have a 𝑡 −distribution on 𝑛, 𝑑, 𝑓 if its þ, 𝑑, 𝑓 is given by  

𝑓(𝑥) =
Γ (𝑛 + 12 )

Γ (𝑛2)√𝑛𝑥
(1 +

𝑥2

𝑛
)−
𝑛+1
2 , −∞ < 𝑥 < ∞ 

If X~𝑛(𝑜 − 𝑖), 𝛾~x2(n) and x and 𝛾 are inept then 𝑇 = 𝑋/√
𝛾
𝑛⁄  has 𝑡(𝑛) 

 

 

Define: A 𝑟, 𝑣X is said to have a 𝐹 − distribution on(𝑚, 𝑛)𝑑, 𝑓 if its þ, 𝑑, 𝑓 is given by  

𝑓(𝑥) =
Γ (𝑚 + 𝑛

2
)

Γ (𝑚2)Γ (
𝑛
2
)
(
𝑚

𝑛
)  
𝑚
2

𝑚
2 − 1

(𝐼 +
𝑚
𝑛 𝑥)

𝑚+𝑛
2  

, 𝑥 ⩾ 0 

                                                            =0      , x<0 



64 
 

 
 

Of 𝑥~𝑥2(𝑚) and γ~𝑥2(𝑛) where 𝑥 and γ are independent𝑧 =
𝑥
𝑚⁄

𝛾
𝑛⁄

 has 𝐹(𝑚, 𝑛) 

Percentage points   the upper∝ − percent point of the 𝑥2(𝑛) distribution is 𝑥2𝑛, ∝ where  

                                                            𝑃(𝑥2(𝑛) > 𝑥2𝑛, ∝) =∝  

The upper∝ − percent point of the𝑡(𝑛) distribution𝑖𝑠, 𝑡𝑛, ∝ where  

                                                               𝑃(𝑡(𝑛) > 𝑡𝑛, ∝) =∝  

Since t-distribution is symmetrical  

𝑃 ([𝑡(𝑛)] > 𝑡𝑛,∝ 2⁄
) =∝ 

The upper∝ − percent point of the F(m ,n, ∝) distribution is Fm ,n, ∝ where  

𝑃(𝐹(𝑚, 𝑛) > 𝐹,𝑚. 𝑛, ∝) =∝ 

Note that                                                            𝐹𝑚, 𝑛, 𝑖−∝=
𝑖

𝐹𝑛,𝑛∝
 

Use of 𝒙𝟐𝒕 and 𝒕̅ distribution in testing problem   

 Use of 𝒙𝟐distribution (i) Testing the variance of a of a distribution: Given a sample (𝑥𝑖 , … 𝑥𝑛) of 

size n from a normal distribution 𝑁(𝜇, 𝜎) where  𝜎 is unknown, we would like to test 𝐻𝑜: 𝜎 = 𝜎𝑜 

against alternative 𝜎>𝜎𝑜 or 𝜎<𝜎𝑜 or 𝜎 ≠ 𝜎𝑜  the tests are summarised n follows  

Case I  𝜇 know 

Alternative   reject 𝑯𝒐at level ∝if 

HO:𝜎 > 𝜎𝑂   ∑ (𝑥𝑖 − 𝜇)
2𝑛

𝑖 /𝜎𝑜
2 ⩾ 𝑥2𝑛, ∝ 

Ho: 𝜎 < 𝜎𝑂          "       "  ⪕ 𝑥2𝑛, ∝ 

Ho: 𝜎 ≠ 𝜎𝑂                                        
"      " ⪕ 𝑥2𝑛, ∝ 𝑥𝑛−𝑖,−∝/2

2

                  𝑜𝑟 ⩾ 𝑥𝑛−𝑖,−∝/2
2 } 

Case II  𝜇 know 

Alternative   reject 𝑯𝒐at level ∝if 

HO:𝜎 > 𝜎𝑂                   (𝑛 − 𝑖)(𝑠)2  ⩾ 𝑥2𝑛 − 𝑖 ∝, 

Ho: 𝜎 < 𝜎𝑂          "       "  ⪕ 𝑥2𝑛, ∝ 

Ho: 𝜎 ≠ 𝜎𝑂                                        
"      " ⪕ 𝑥2𝑛, ∝ 𝑥𝑛−𝑖,−∝/2

2

                  𝑜𝑟 ⩾ 𝑥𝑛−𝑖,−∝/2
2 } 

Where (𝑠)2 =
1

𝑛−1
∑ (𝑥𝑖 − 𝑥̅)

2𝑛
𝑖  

(2) Testing proportions in 𝓀(>2) classes Suppose 𝑎, 𝑟, 𝑣 takes values in one of 𝓀(>2)mutually 

exclusive classes AI,......A𝓀 with þ = 𝑃(𝑥 𝜖 AI), 1,2, … . . 𝓀, ∑ þI = I
𝓀
I  we  want to test the hypotheses 

that  

𝐻𝑜: þ𝑖 = þ𝑖
𝑜(𝑖 = 1,… . 𝓀) 

Against                                                           𝐻𝑖: þ𝑖 ≠ þ𝑖
𝑜  for all 
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For a random (x, … 𝑥𝑛) of n observation let the observed frequencies in the 𝓀 classes be 𝑜1, 𝑜2, 

𝑜𝑛(∑ 𝑜𝑖 = 𝑛)
𝑛
𝑖 and the expected frequencies under the  𝐻𝑜 be 𝑒1, 𝑒2, …… . 𝑒𝓀 (∑ 𝑒𝑖 = 𝑛

𝑛
𝑖 ) where 𝑒𝑖 =

𝑛þ𝑖  calculate  

𝛘𝟐 =∑
(𝑜𝑖 − 𝑒𝑖)

2

𝑒𝑖

𝓀

𝑖

 

Them, for large sample, 𝑥2has 𝑥2(𝓀 − 𝑖) the test of 𝐻𝑜  has the cr. region  

𝑥2 ⩾ 𝑥𝓀−𝑖,𝓀
2  

Note: it we want to test 𝐻𝑜þ1 = þ2, …… .= þ𝑛 we take þ𝑖
𝑜 =

1

𝓀
to any 

(3) Testing goodness of fit:  given a sample (𝑥1 , . . 𝑥𝑛) of Observation on 𝑎. 𝑟. 𝑣 X arranged in the 

form of a frequencies distribution having 𝓀 classes AI, … . . A𝓀 we would like to test the hypothesis 

that distribution of X has a specified from with þ, 𝑑, 𝑓(𝑜𝑟 þ,𝑚, 𝑓)𝑓𝑜(𝑥, 𝜃) the parameter 𝜃 be a 

simple one or a vector (𝑜𝑖,… . . 𝜃ℯ)   

Let the observed frequencies in the 𝓀 classes be 𝑜1, 𝑜2… . , 𝑜𝓀, ∑ 𝑜𝑖 = 𝑛
𝓀
𝑖  and  the expected 

frequencies under 𝐻𝑜  be 𝑒𝑖 , 𝑒2, … . 𝑒𝑛∑ 𝑜𝑖 = 𝑛
𝓀
𝑖  

Such that 𝑒𝑖 = 𝑃𝐻𝑜(𝑥 𝜖 𝐴𝑖) Calculate 

𝛘𝟐 =∑
(𝑜𝑖 − 𝑒𝑖))

2

𝑒𝑖
=∑

𝑜𝑖
2

𝑒𝑖

𝓀

𝑖

𝓀

𝑖

− 𝑛 

Then, for large sample, 𝑥2has 𝑥2(𝓀 − 𝑖) the test of 𝐻𝑜  has the cr. Region  

𝑥2 ⩾ 𝑥𝓀−𝑖,∝
2  

Note if 𝑟(𝑜𝑓 ℓ) parameters in 𝜃 are estimated from the sample then χ2 has χ2(𝓀 − 𝑟 − 𝑖)if any 

expected  frequency  is lass  then 5 we pool this  class with the adjoining class and denote by𝓀 the 

effective  number ƪ classes  after paroling 

(4) Testing independence of two attributes in a 𝓀xℓ contingency table 

In a (𝓀xℓ) contingency table for two attributes, we want to test 

                                                 𝐻𝑜: Two attributes are independent  

Against                             𝐻𝑜: Two attributes are not independent 

 

Let 𝑂𝑖𝑗 = observed frequency in the (𝑖, 𝒿) the cell  

And 𝑒𝑖𝑗 = expected a=(𝑖𝑡ℎ 𝑟𝑜𝑤 𝑡𝑜𝑡𝑎𝑙 𝑥𝑗𝑡ℎ𝑐𝑜𝑙𝑢𝑚 𝑡𝑜𝑡𝑎𝑙)n “   “    “under 𝐻𝑜   

Calculate  

 χ2 = ∑ ∑
(𝑜𝑖𝑗−𝑒𝑖𝑗)

2

𝑒𝑖𝑗

𝓀
𝑖=1

𝓀
𝑖=1  
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=∑∑
𝑜𝑖𝑗
2

𝑒𝑖𝑗
− 𝑛

𝓀

𝑖=1

𝓀

𝑖=1

 

Where n=total frequency. Then 𝑥2 has 𝑥2 on(𝓀 − 𝑖)𝑥(ℓ − 𝑖)𝑑. 𝑓 the test of 𝐻𝑜  has the cr. Region  

𝑥2 ⩾ 𝑥𝓀−𝑖,ℓ−𝑖,∝
2  

(5) Testing the homogeneity of 𝓴(> 𝟐) correlation coefficients.  

Suppose 𝑟1,… . 𝑟𝑘 are 𝓀  sample correlation coefficients corresponding to 𝓀 normal   

Distribution with population correlation coefficients 𝑝𝑖 ,… 𝑝𝓀 we want to test  

𝐻𝑂 ∶ 𝑝1,… 𝑝𝓀 =, . . 𝑝𝓀 

Us 𝐻𝐼 : all correlation coefficients are not equal we use the friskers z-trans function of correlation 

coefficients given by 𝑧 =
1

2
𝑙𝑜𝑔ℯ

𝑖+𝑟

𝑖+𝑟
, 𝑆 =

1

2
𝑙𝑜𝑔ℯ

𝑖+𝑝

𝑖−𝑝
 so that  

𝑧~𝑁 (𝑆,
1

√𝑛 − 3
) 

Where n is the sample size. 

We calculate z1, z2,......z𝓀  corresponding to r1,r2,.......r𝓀  having sample size n1,n2,....n𝓀 and define  

𝑧̅ = ∑(𝑛𝑖 − 3)𝑧𝑖/(∑(𝑛𝑖 − 3)

𝓀

𝑖

𝓀

𝑖

 

And                                                                    𝑥2 = ∑ (𝑛𝑖 − 3)(𝑧𝑖 − 𝑧̅)
2𝓀

𝑖  

Then  χ2has  χ2on (𝓀 − 𝑖)𝑑. 𝑓 and the test of 𝐻𝑜  has cr. Region  

 χ2 ⩾  χ2(𝑛−𝑖),∝
  

Remark: if 𝐻𝑜  is accepted we may obtain an estimate of the common corresponding coefficients 

𝜌∗(𝑠𝑎𝑦) by solving  

𝑧̅ =
1

2
𝑙𝑜𝑔𝑒

1 + 𝜌∗

1 − 𝜌∗
 

Uses if t-distribution: 

(i)Testing the mean of a single population: let (𝑥1, …… . . 𝑥𝑛) be a sample of size n from a normal 

population  𝑁(𝜇, 𝜎2) and, as usual, 𝑥̅ and 𝑠2 are the sample mean and sample variance. We would 

like to let the null hypothesis  𝐻𝑜 : 𝜇 = 𝜇𝑜 against alterative 𝜇 > 𝜇𝑜  or  𝜇 < 𝜇𝑜  or 𝜇 ≠ 𝜇𝑜 the tests are 

summarised as follows:  

 

 (2) Testing the equality of two population means: let (𝑥1, … . . 𝑥𝑛2) and (𝓎1, ……𝓎𝑛2) be two 

samples from in dept normal populations 𝑁(𝜇1, 𝜎1) and 𝑁(𝜇2 , 𝜎2) respectively let 𝑥̅, 𝓎̅, 𝑠1
2 , 𝑠2

2 be as 

usual and let  
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(𝑠)2 =
(𝑛1 − 1)(𝑠1) 

2 + (𝑛2 − 1)𝑠2
2

𝑛1 + 𝑛2 − 2
 

Be the pooled variance. 

 We would like to test  𝐻𝑂: 𝜇1 = 𝜇2  against alternative 𝜇1 < 𝜇2 or 𝜇1 ≠ 𝜇2 the test are summarised 

as follows: 

 

Case I   

Alternative    Reject 𝐻𝑂  at level ∝ 𝑖𝑓 

𝐻𝑖: 𝜇1 > 𝜇2                                      
𝑥̅−𝓎̅

√{
𝜎1
2

𝑛1
+
𝜎2
2

𝑛2
}

⩾ 𝑧∝ 

𝐻𝑖: 𝜇1 < 𝜇2                                       “ ⪕ −𝑧∝ 

𝐻𝑖: 𝜇1 ≠ 𝜇2                                        
[𝑥̅−𝓎̅]

√{
𝜎1
2

𝑛1
+
𝜎2
2

𝑛2
}

⩾ 𝑧∝/2 

Case II  𝜎1, 𝜎2 unknown (𝜎1 = 𝜎2) essential corruption    

Alternative                                               Reject 𝐻𝑂  at level ∝ 𝑖𝑓 

 

 

Remark: if we want to test 𝐻𝑂 = 𝜇1 − 𝜇2 = (≠ 𝑜)𝑤𝑒 use the statistics 

(𝑥̅ − 𝓎̅) − (𝛿)

&√
1
𝑛1
+
1
𝑛2

 

Uses of F-distribution:  

(1)Testing equality of two population variances: 

Let two samples of sizes 𝑛1 and 𝑛2 be given from two independent normal population 𝑁(𝜇1, 𝜎1) and 

𝑁(𝜇2, 𝜎2), respectively .Let 𝑠1
2, 𝑠 2

2 be the two sample  variance. We would like to test the null 

hypothesis 𝐻𝑜: 𝜎1 = 𝜎2 against𝐻𝑖: 𝜎1 ≠ 𝜎2  The test are cr follows: 

Case I  𝜇1 , 𝜇2 known  

Reject 𝐻𝑜  if either 
∑ (𝑥𝑖−𝜇1)

2𝑛1
𝑖=1

∑ (𝓎𝑖−𝜇2)
2𝑛2

𝑖=1

⩾
𝑛1

𝑛2
𝐹𝑛1,𝑛2,∝/2 

Or                                 
∑ (𝓎𝑖−𝜇2)

2𝑛2
𝑖=1

∑ (𝑥𝑖−𝜇1)
2𝑛2

𝑖=1

⩾
𝑛2

𝑛1
𝐹𝑛1,𝑛2,∝/2 

 

Case II I  𝜇1, 𝜇2 known 
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Reject 𝐻𝑜  if either  
(𝑠1)2

(𝑠2)1
  ⩾ 𝐹𝑛1−1,𝑛2−1,∝/2 If 𝑠1 > 𝑠2 

Or 
(𝑠1)2

(𝑠2)1
  ⩾ 𝐹𝑛2−1,𝑛1−1,∝/2 If 𝑠2 > 𝑠1 

(2) Testing the multiple correlation coefficient: Given a sample of size or from a bivariate         

normal population (𝑥1, 𝑥2, 𝑥3) with multiple correlation coefficient 𝑅1(23) of  𝑥1𝑜𝑟(𝑥2, 𝑥3) we would 

like to test the null hypotheses 𝐻𝑂𝑅1(23) = 0 let the sample multiple correlation coefficient be 

𝑅1(23). The test is to reject 𝐻𝑂  at level ∝ if 

𝑟(23)
2

1 − 𝑟1(23)
2 .

𝑛 − 3

2
⩾ 𝐹2,𝑛−3,∝ 

(3) Testing the equality of means of 𝓀 normal distribution (𝓴 > 𝟐)[see left page]  

 

Farceur’s z-transformation of correlation coefficient:  Suppose a sample of size n is drawn from 

a bivariate population with correlation coefficient the variables Fisher intruded the transformation  

                                                                                    𝑧 =
1

2
𝑙𝑜𝑔𝑒

1+𝑟

1−𝑟
    

Where r is a sample correlation coefficient Though the population correlation coefficient P may be 

widely different from zero, the new statistics z may be amounted to be normally distributed even 

when n is as small as 10 it has hen show that z has approximate mean  

𝜉 =
1

2
𝑙𝑜𝑔𝑒

1 + 𝑝

1 − 𝑝
 

And approximate mean1 (𝑛 − 3), 𝑖. 𝑒⁄  

√𝑛 − 3(𝑧 − 𝜉)~𝑁(𝑜, 1) 

(I)For testing  𝐻𝑜 ∶ 𝑃 = 𝑃𝑜  against 𝐻𝑖 ∶ 𝑃 ≠ 𝑃𝑜we reject 𝐻𝑜  if  

√𝑛 − 3[𝑧 − 𝜉𝑜] ⩾ 𝑁∝/2 

Where 𝜉𝑜 =
1

2
𝑙𝑜𝑔𝑒

1+𝑝

1−𝑝
 and 𝑁∝ is the appear ∝ %  point of normal distribution 𝑁(𝑂, 1) 

(ii)For testing 𝐻𝑜 ∶ 𝑝1 = 𝑝2 against  𝐻𝑖 ∶ 𝑝1 ≠ 𝑝2  involving two populations, let  𝑟1, 𝑟2 be the sample 

correlation coefficient for two independent sample of size 𝑛1 , 𝑛2 from the two populations and let 

𝑧1,𝑧2be there transformed values,𝑖, 𝑒  

𝑧𝑖 =
1

2
𝑙𝑜𝑔𝑒

1 + 𝑟𝑖
1 − 𝑟𝑖

(𝑖 = 1,2) 

The test is to reject 𝐻𝑜  at level ∝ if  

|𝑧1 − 𝑧2|

√
1

𝑛1−3
+

1
𝑛2−3

⩾ 𝑁∝/2 
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(iii)Let  𝑟1, 𝑟2… . . 𝑟𝓀 be sample correlation coefficient for 𝓀 sample of sizes 𝑛1, 𝑛2…𝑛𝓀  drown from 

𝓀 independent vicariate normal population with correlation coefficients 𝑝1𝑝2… . . 𝑝𝓀. Let 𝑧1, 𝑧𝓀  be 

the transformed values and let  

𝑧̅ =
∑ (𝑛𝑖 − 3)𝑧𝑖
𝓀
𝑖=1

∑ (𝑛𝑖 − 3)
𝓀
𝑖=1

 

The test is to reject 𝐻𝑜  at level ∝ if  

∑(𝑛𝑖 − 3)(𝑧𝑖 − 𝑧̅)
2 ⩾ 𝑥𝓀−1,∝

2

𝓀

𝑖=1

 

If 𝐻𝑜  is accepted an estimate of common correlation coefficient p is 𝑝𝑟 where𝑧̅  is the transformed 

values of 𝑝∗(x) For large sample  

þ~𝑁(𝑝
√𝑃(𝐼 − 𝑃

𝑛
) 

Large sample tests so for we have considered tests of hypothesis which contain assumptions 

regarding the population  are satisfied .Now we consider some approximate test which are valid only 

for sufficiently large samples, but they have wide applicability and hold for all populations satisfying 

certain general  conditions rather than being valid for some particular populations only (e.g. normal ) 

(i)Testing a proportion: Suppose in a population is the proportion of members with a qualitative 

character A. Let p be the proportion of members with A in a random sample of size n. we would like to 

test the hypothesis H0: P=P0 .The test is to reject H0 at level α if  

[þ − 𝑃𝑜]

√𝑝𝑜(1 − 𝑝𝑜)/𝑛
⩾ 𝑁∝/2 

(ii)Testing the equality of two population proportions: Let 𝑝1, 𝑝2 be two population proportions and  

þ1, þ2 be the two sample proportions dream from there indecent population the test of  𝐻𝑜: , 𝑃1, 𝑃2  is to 

reject 𝐻𝑜at level ∝if 

[þ1 − þ2]

√þ(𝑖 − þ) {
1
𝑛1
+
1
𝑛2
}

≥ 𝑁∝/2 

Where  

þ =
𝑛1þ1 + 𝑛2𝑛2
𝑛1 + 𝑛2

 

(iii)Testing for a st. deviation: let s be the st. Deviation of a sample of observation of size drown from a 

population with st. Deviation 𝜎(x) the test of 𝐻𝑂 : 𝜎 = 𝜎𝑜 is to reject  𝐻𝑂  at level ∝if  

[𝓈 − 𝜎𝑜]

𝜎𝑜/√2𝑛
⩾ 𝑁∝/2 

(iv)Testing for equality of two population st. Deviation Let 𝓈1, 𝓈2 be the st. Deviation of two sample of 

sprees 𝑛1, 𝑛2  from two independent population with st. Deviation  𝜎1, 𝜎2 Let  

𝓈2 =
𝑛1𝓈1

2 + 𝑛2𝓈2
2

𝑛1 + 𝑛2
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The test of𝐻𝑜: 𝜎1, 𝜎2 is to reject the at level ∝if  

[𝓈1 − 𝓈2]

𝓈√
1
2𝑛1

+
1
2𝑛2

⩾ 𝑁∝/2 

Definition:- For a random sample (𝑥1, … , 𝑥𝑛) from the distribution  of a 𝑟. 𝑣. 𝑥 having þ, 𝑑, 𝑓  𝑓(𝑥, 𝜃) Let 

𝐿1𝐿1(𝑥1, … , 𝑥𝑛)and 𝐿2(𝑥1 , … , 𝑥𝑛) be two statistics  such that  𝐿1 ≤ 𝐿2. The interval [𝐿1, 𝐿2] is a 

confidence interval for 𝜃 with. Confidence coefficient 1−∝ (0 <∝< 1) if 𝑃𝜃[𝐿1 ≤ 𝜃 ≤ 𝐿2] = 1−∝  for 

all 𝜃 𝜖 𝛺 𝐿1 and 𝐿2 are called the lower and upper confidence limits, respectively at least one of them 

should not be a constant. 

Interval Estimation 

Estimation of a parameter by a sample value is known as point estimation. An alternation produce is to 

give an interval within which the parameter may be supposed to lie with high probability. This is called 

interval estimation and the interval is called the confidence for the parameter  

Suppose 𝑎, 𝑟, 𝑣  x has Normal distribution  𝑁(𝜇, 𝜎) with unknown mean 𝜇 and known st. Deviation𝜎. Let 

(𝑥𝑖 , … , 𝑥𝑛) be the values of a random sample of size or from then distribution .We know that the sample 

mean 𝑥̅~𝑁 (𝜇,
𝜎

√𝑛
)  and, hence

√𝑛(𝑥−𝜇)

𝜎
~𝑁(𝑜, 𝑖). It follows that  

𝑃 {−1.96 ⪕
√𝑛(𝑥 − 𝜇)

𝜎
⪕ 1.96} = 0.95 

Or, equivalently,  

𝑃 {𝑋̅ − 1.96 ⪕ 𝜇 ⪕ 𝑋̅ + 1.96
𝜎

√𝑛
} = 0.95 

This shows that, in respected sampling the probability is 0.95 that the interval  

{𝑋̅ − 1.96
𝜎

√𝑛
; 𝑋̅ + 1.96

𝜎

√𝑛
} 

Will include 𝜇, We say that above  is a confidence interval  for 𝜇 with confidence  coefficient ,95. The 

two end points are known as 95% confidence limits for𝜇. 

Let us now consider the general problem Let 𝑎, 𝑟, 𝑣 x has distribution depending on an unknown 

parameter 𝜃 which is to be estimated. Suppose Z is a statistics (usually it is a function of a sufficient 

statistics if it exists) which is a function of 𝜃 but whose distribution does not depend on𝜃. Such a 

statistics z is called a ploetal function Let 𝜆1 and 𝜆2 be two numbers such that  

            𝑃{𝜆1 ≤ 𝑍 ≤ 𝜆2} = 1−∝                                 −  (1) 

For a specified ∝ (𝑜 <∝< 1) 

The above inequality can be solved such that it assumes the from  

𝑃{𝜃1((𝑥1, … , 𝑥𝑛)) ≤ 𝜃 ≤ 𝜃2(𝜆1, . . 𝜆2)} = 1−∝ 

For all 𝜃 where 𝜃1and 𝜃2are random variables which do not depend on𝜃.Finally, if we astute the sample 

value [𝜃1((𝑥1, … , 𝑥𝑛)), 𝜃2((𝑥1, … , 𝑥𝑛))]  becomes a confidence interval for 𝜃 with desired confidence 

coefficient  1−∝. 

Remark:  the numbers 𝜆1, 𝜆2 may be chosen in several ways, giving rise to several confidence intervals. 

We usually choose confidence intervals of shortest length. 
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Example (i) 𝑋~𝑁(𝜇, 𝜎) where 𝜎 is Known and 𝜇 is to be estimated  

𝐿𝑒𝑡 𝑧 =
√𝑛(𝑥̅ − 𝜇)

𝜎
 

Which has 𝑁(𝑂, 𝐼) distribution For a specified∝  let 𝑁∝/2 be the 
𝛼

2
   % critical value of 𝑁(𝑜, 1)then 

𝑃 {−𝑁∝/2 ⪕
√𝑛(𝑥̅ − 𝜇)

𝜎
⪕ 𝑁∝/2} = 𝐼−∝ 

Or                                                  𝑃 {𝑥̅ − 𝑁∝/2
𝜎

√𝑛
⪕ 𝜇 ⪕ 𝑥̅ + 𝑁∝/2

𝜎

√𝑛
} = 𝑖−∝ 

So that                                                     𝑃 {𝑥̅ − 𝑁∝/2
𝜎

√𝑛
𝑥̅ + 𝑁∝/2

𝜎

√𝑛
} 

Isa confidence interval of 𝜇 with confidence coefficient (𝑖−∝) 

(2) . 𝑥~𝑁(𝜇, 𝜎), 𝜎 unknown and 𝜇 to be estimated  

 𝐿𝑒𝑡 𝑧 =
√𝑛(𝑥̅−𝜇)

𝑠
where 𝑠2 =

𝑖

𝑖−1
∑ (𝑥 − 𝑥̅)2𝑛
𝑖   

 Then z has t(n-i) distribution , so that  for a specified ∝, 

𝑃 {𝑡𝑛−1,∝/2 ⪕
√𝑛(𝑥̅ − 𝜇)

𝑠
⪕ 𝑡𝑛−1∝/2} = 𝑖−∝ 

Or                                        𝑃 {𝑋̅ − 𝑡𝑛−1,∝/2
𝑆

√𝑛
⪕ 𝜇̅ ⪕ 𝑋̅ + 𝑡𝑛−1,∝/2

𝑆

√𝑛
} = 𝑖−∝ 

So that                                                {𝑋̅ − 𝑡𝑛−1,∝/2
𝑆

√𝑛
, 𝑋̅ + 𝑡𝑛−1,∝/2

𝑆

√𝑛
} 

Is a confidence interval of 𝜇 with confidence coefficient (1−∝) 

(3) 𝑥~𝑁(𝜇, 𝜎), 𝜇 known and 𝜎 is to be estimated  

𝐿𝑒𝑡 𝑧 =∑(𝑥1 − 𝜇)
2

𝑛

𝑖

 

Then z has 𝑥2(𝑛) distribution, so that for a specified  ∝ 

𝑃 {𝑋𝑛,𝑖−∝/2
2 ⪕

∑(𝑥𝑖 − 𝜇)
2

𝜎2
⪕ 𝑋𝑛,𝑖−∝/2

2 } = 1−∝ 

Or                                                      𝑃 {
∑(𝑥𝑖−𝜇)

2

𝑋𝑛,1−∝/2
2 ⪕ 𝜎2 ⪕

∑(𝑥𝑖−𝜇)
2

𝑋𝑛,1−∝/2
2 } = 1−∝ 

There, 𝑎(1−∝)% confidence interval of 𝜎2  

{
∑(𝑥𝑖 − 𝜇)

2

𝑋𝑛,1−∝/2
2 ,

∑(𝑥𝑖 − 𝜇)
2

𝑋𝑛,1−∝/2
2 } 

(4)  𝑥~𝑁(𝜇, 𝜎), 𝜇 Unknown and 𝜎 is to be estimated  

                                                𝐿𝑒𝑡 𝑧 =
(𝑛−1)𝑠2

𝜎2
 Where 𝑠2 =

1

𝑛=1
∑ (𝑥1 − 𝑥̅)

2𝑛
𝑖  

Then z has 𝑥2(𝑛) distribution, such that  
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𝑃 {𝑋𝑛,𝑖−∝/2
2 ⪕

(𝑛 − 1)𝑠2

𝜎2
⪕ 𝑋𝑛,𝑖−∝/2

2 } = 1−∝ 

Or                                                              𝑃 {
(𝑛−1)𝑠2

𝑋𝑛,𝑖−∝/2
2 ⪕ 𝜎2 ⪕

(𝑛−1)𝑠2

𝑋𝑛,𝑖−∝/2
2 } = 1−∝ 

Therefore, a (𝑖−∝)% confidence interval of 𝜎2 is  

{
(𝑛 − 1)𝑠2

𝑋𝑛,𝑖−∝/2
2 ,

(𝑛 − 1)𝑠2

𝑋𝑛,𝑖−∝/2
2 } 

(5) Let x have an exponential distribution with parameter λ which is to be estimated  

𝐿𝑒𝑡 𝑧 = 2𝜆𝑛𝑥̅ 

Then Z has 𝑥2(2𝑛) ditribution, so that for a specified ∝ 

𝑃{𝑋2𝑛,1−∝/2
2 ⪕ 2𝜆𝑛𝑥̅ ⪕ 𝑋2𝑛,1−∝/2

2 } = 𝑖−∝ 

Or                                                                𝑃 {
𝑋2𝑛,1−∝/2
2

2𝑛𝑥̅
⪕,⪕

𝑋2𝑛,,∝/2
2

2𝑛𝑥̅
} 

Therefore, a (𝑖−∝)% confidence interval of λ is  

{
𝑋2𝑛,1−∝/2
2

2𝑛𝑥̅
⪕,⪕

𝑋2𝑛,,∝/2
2

2𝑛𝑥̅
} 

(6)  Let X ~N(𝜇, 𝜎) and γ ~N(𝜇2, 𝜎2)where 𝜎1 = 𝜎2(𝑢𝑛𝑘𝑜𝑤𝑛 ). We want a confidence for (𝜇1 − 𝜇2) 

𝐿𝑒𝑡 𝑧 =
(𝑥̅ − 𝑦̅) − (𝜇1 − 𝜇2)

𝑠√
1
𝑛1
+
1
𝑛2

 

Where 𝑥̅, 𝑦̅, 𝑠 are usually defined (𝑠2 =
(𝑛1−1)𝑠1

2+(𝑛2−1)𝑠2
2

𝑛1+𝑛2−2
 

Then Z has 𝑡(𝑛1 + 𝑛2 − 2)distribution, such that  

𝑃

{
 

 

𝑡𝑛1+𝑛2−2,∝/2 ⪕
(𝑥̅ − 𝑦̅) − (𝜇1 − 𝜇2)

𝑠√
1
𝑛1
+
1
𝑛2

𝑡𝑛1+𝑛2−2,∝/2

}
 

 

= 𝑖−∝ 

Or 𝑃 {(𝑥̅ − 𝑦̅) − 𝑡𝑛1+𝑛2−2,∝/2𝑠𝑠√
1

𝑛1
+

1

𝑛2
⪕ (𝜇1 − 𝜇2) ⪕ (𝑥̅ − 𝑦̅) + 𝑡𝑛1+𝑛2−2,∝/2𝑠𝑥𝑠√

1

𝑛1
+

1

𝑛2
} = 𝑖−∝ 

So that a confidence interval for 𝜇1 − 𝜇2 is  

{(𝑥̅ − 𝑦̅) − 𝑡𝑛1+𝑛2−2,∝/2𝑠𝑠√
1

𝑛1
+
1

𝑛2
} (𝑥̅ − 𝑦̅) + 𝑡𝑛1+𝑛2−2,∝/2𝑠𝑥𝑠√

1

𝑛1
+
1

𝑛2
 

With confidence coefficient 1−∝ 

(7)Let X ~N (𝜇1, 𝜎1) and γ ~N (𝜇2 , 𝜎2) where 𝜇1, 𝜇2 are unknown and it is requested to obtain a 

confidence interval of 
𝜎1
2

𝜎2
2 

Let Z =
𝑆1
2/𝜎1

2

𝑆2
2/𝜎2

2 (𝑆1
2 > 𝑆2

2) 

So that Z has F distribution on (𝑛1 − 𝑖, 𝑛2 − 𝑖)𝑑, 𝑓  
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Then  

𝑃 {𝐹𝑛1−𝑖,𝑛2−𝑖,𝑖−∝/2 ⪕
𝑆1
2/𝜎1

2

𝑆2
2/𝜎2

2 ⪕ 𝐹𝑛1−𝑖,𝑛2−𝑖,𝑖−∝/2} = 𝑖−∝ 

 

Or                                                 𝑃 {
𝑆1
2/𝑆2

2

𝐹𝑛1−𝑖,𝑛2−𝑖,𝑖−∝/2
⪕

𝜎1
2

𝜎2
2 ⪕

𝑆1
2/𝑆2

2

𝐹𝑛1−𝑖,𝑛2−𝑖,𝑖−∝/2
} = 𝑖−∝ 

Or                                                 𝑃 {
𝑆1
2/𝑆2

2

𝐹𝑛1−𝑖,𝑛2−𝑖,𝑖−∝/2
⪕

𝜎1
2

𝜎2
2 ⪕

𝑆1
2/𝑆2

2

𝐹𝑛1−𝑖,𝑛2−𝑖,𝑖−∝/2
} = 𝑖−∝ 

So that                                             {
1

𝐹𝑛1−𝑖,𝑛2−𝑖,𝑖−∝/2

𝑆1
2

𝑆2
2 , 𝐹𝑛1−𝑖,𝑛2−𝑖,𝑖−∝/2

𝑆1
2

𝑆2
2} 

Is a confidence interval of 
𝜎1
2

𝜎2
2 with confidence coefficient 𝑖−∝ 

(8) Simultaneous confidence region for (𝜇, 𝜎)for a normal distribution. 

Let 𝑥~𝑁(𝜇, 𝜎), 𝜇, 𝜎 with unknown  

One many chose a confidence region for (𝜇, 𝜎) using the two relations  

𝑃 {𝑥̅ − 𝑡𝑛−1,∝/2
𝑠

√𝑛
⪕ 𝜇 ⪕ 𝑥̅ − 𝑡𝑛−1,∝/2

𝑠

√𝑛
} = 𝑖−∝ 

Diagrammatically shown as the shaded region below  

Where 𝑡𝑎 = 𝑥̅ − 𝑡𝑛−𝑖,∝/2
𝑠

√𝑛
𝑒𝑡𝑐 

𝑥𝑎 =
(𝑛 − 1)𝑠2

𝑥𝑛−1,∝/2
2   

But it is difficult to find the probability of the sample to full in the shaded region (confidence region) 

Alternatively, using the independence of 𝑥̅ and 𝑠2 we chose the cofidence region by the help of relation  

𝑃 {−𝑁∝1/2 ⪕
𝑥̅ − 𝜇

𝜎/√𝑛
⪕ 𝑁∝1/2} = 1 −∝1 

A,d                                               𝑃 {𝑥𝑛−𝑖,∝/2
2 ⪕

(𝑛−1)𝑠2

𝜎2
⪕ 𝑥𝑛−𝑖,∝/2

2 } = 1 −∝2 

Since 𝑥̅, 𝑠2 are indept  

𝑃 {𝑁∝1/2 ⪕
𝑥̅ − 𝜇

𝜎/√𝑛
⪕ 𝑁∝1/2, 𝑥𝑛−𝑖,∝/2

2 ⪕
(𝑛 − 1)𝑠2

𝜎2
⪕ 𝑥𝑛−𝑖,∝/2

2 } = (1 −∝1), (1 −∝2) 

Chosing ∝1, ∝2 such that (𝐼 −∝1), (𝑖 −∝2) = 𝑖−∝ we can  

Obtain the boundaris of the confidence .region without difficully  this is shown by the shaded region  

below  

Where                                                                        𝑞 = 𝑁∝1/2 

𝑞1 = 𝑥𝑛−𝑖,𝑖,∝/2
2  

Approximate confidence intervals(for large samples) 

Let x be bernoulli 𝑟. 𝑣 with  
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𝑃(𝑋 = 1) = 𝑃, 𝑃(𝑥 = 𝑜) = 1 − 𝑝 we want to find confidence interval for P. 

 

 

For lage sample size ,n, we have  

𝑝 − 𝑝

√𝑃(𝑖 − 𝑃)/𝑛
~𝑁(𝑜, 1) 

Or  
𝑝 − 𝑝

√𝑃(𝑖 − 𝑃)/𝑛
~𝑁(𝑜, 1) 

Where þ is the sample  propostion  

Them , approxi mately , 

𝑃 {−𝑁∝/2 ≤
þ − þ

√þ(𝑖 − þ)/𝑛
≤ 𝑁∝/2} = 1−∝ 

Or                                             𝑃 {þ − 𝑁∝2√
þ(𝐼−þ)

𝑛
⪕ þ +𝑁∝/2√

þ(𝐼−þ)

𝑛
} = 1−∝ 

So that  

{þ − 𝑁∝/2√
þ(1 − þ)

𝑛
, þ + 𝑁∝/2√

þ(1 − þ)

𝑛
} 

Is a (1−∝)% confidence interval for P 

(II) For two sample we can similerly find a  confidence interval for 𝑃1, 𝑃2 as follows: 

𝑃{𝑁∝2 ⪕
(þ1, þ2) = (𝑃1, 𝑃2)

√[þ(𝐼 − þ) (
1
𝑛1
+
1
𝑛2
)]
⪕ 𝑁∝/2} = 1−∝ 

Where                                                        þ =
𝑛1þ1+𝑛2þ2

𝑛1+𝑛2
 

So that {(þ1, þ2) − 𝑁∝/2√[þ(𝐼 − þ) (
1

𝑛1
+

1

𝑛2
) þ1, þ2) − 𝑁∝/2√[þ(𝐼 − þ) (

1

𝑛1
+

1

𝑛2
)} 

Is a (𝑖−∝)% confidence  interval for 𝑝1 − 𝑝2 

(iii) Let x be 𝑎, 𝑟, 𝑣 having mean 𝜇, variance 𝜎2 and we want a confidence interval for 𝜎 

For that approximately . 

𝑃 {−𝑁∝2 ⪕
𝑠 − 𝜎

𝑠/√2𝑛
⪕ 𝑁∝2} = 1−∝ 

Or                                           𝑃 {𝑠 − 𝑁∝2
𝑠

√𝑛
⪕ 𝜎 ⪕ 𝑠 + 𝑁∝2

𝑠

√𝑛
} = 1−∝ 

Then                                                    𝑃 {𝑠 − 𝑁∝2
𝑠

√𝑛
, 𝑠 + 𝑁∝2

𝑠

√𝑛
} 

Is a (𝑖−∝)% confidence for 𝜎 

(iv) For two sample we an similerly find a cofidence interval for 𝜎1 − 𝜎2 as follows: 
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𝑃

{
 

 

−𝑁∝/2 ⪕
(𝑠1 − 𝑠2) − (𝜎1 − 𝜎2)

𝑠√
1
2𝑛1

+
1
2𝑛2

⪕ 𝑁∝/2

}
 

 

= 1−∝ 

Where 𝑠2 =
𝑛1𝑠1

2+𝑛2𝑠2
2

𝑛1+𝑛2
 

So that  

{(𝑠1 − 𝑠2) − 𝑁∝/2𝑠√
1

2𝑛1
+

1

2𝑛2
, (𝑠1 − 𝑠2) + 𝑁∝/2𝑠√

1

2𝑛1
+

1

2𝑛2
} 

Is a (𝑖−∝)% confidence interval for (𝜎1 − 𝜎2)  

(v) Let (𝑥, 𝑦) have  a bivanate normal distribution with coefficient P and me want to find a confidence 

region for P. 

By using Fisher,s Z transformation  

                                                                           ξ=
1

2
𝑙𝑜𝑔𝑒

1+𝑝

1−𝑝
 

and                                                                  𝑧 =
1

2
𝑙𝑜𝑔𝑒

1+𝑟

1−𝑟
 

whose 𝑟 is the corr crofficient in a sample of size n  

Then                                                             
𝑍−3

1√𝑛−3
~𝑁(𝑂, 𝐼) 

So that  

𝑃 {−𝑁∝/2 ⪕ √𝑛 − 3(𝑍 − 3) ⪕ 𝑁∝/2} = 𝐼−∝ 

Or                                           𝑃 {𝑍 −
1

√𝑛−3
𝑁∝/2 < 3 ⪕ 𝑍 +

1

√𝑛−3
𝑁∝/2} = 𝐼−∝ 

So that  

{𝑧 −
1

√𝑛 − 3
𝑁∝/2 , 𝑧 +

1

√𝑛 − 3
𝑁∝/2} 

Gives a (𝑖−∝)% confidence interval for ξ.From  this we can earily obtain the corrponding confidence 

interval for P. 

 

 

NON-PARAMETRIC INFERENCE 

In all problems of statictics  inference considered so fan  we assumed that the  distribution of the  

random  variable  breing  sampled  is  know n  except  for some  parameters . in pratice  however the 

functional from  in the  distribution  is  seldom  if ever , known if  is therefore  desivable  to devise some  

produres that  are free from  this  assumption concering  distribution such produres are  commonly 

refered to as distribution free or non-parametric methods  the  term distribution free  refers to the fact 

that  no  assumptions are made about  the underlying  distribution  execpt that the distribution  function  

being  sampled  is absolutely continuous  or purely  discrete. The  term non-parametric refers to the  

factors that there are no parameters  involved in the traditional sense of the  parameter used so for. 
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                            We will consider only the inferential problem of testing of hypothesis and  dercribe a few 

non-parametrictests  

Single- sample problems :  (a)The problem of fit : the problem of fit is to test the hypothesis that a 

sample of obsevations (𝑥𝑖 , 𝑥𝑛) is from some specified distribution  against the alternative that it is  from  

some other distribution.Thus we have to test  

𝐻𝑜: 𝑥~𝐹𝑜(𝑥) = 𝐹𝑜(𝑥) 

Against                                               𝐻𝑜: 𝑥~𝐹(𝑋) ≠ 𝐹𝑜(𝑥)for some 𝑥 

(i)Chi- square test: Let there  be 𝓀 categories  and let þ𝑖  be the probality of a random obsevation from 

𝐹𝑜(𝑥) to fall in the 𝑖𝑡ℎ category (𝑖 = 1,2, … . 𝑛).For a sample of size n, Let 𝑜𝑖 be the  obsevarved freqnecy 

in the 𝑖𝑡ℎ category and let 𝑒𝑖 = 𝑛þ𝑖  be the expected frequency in the 𝑖𝑡ℎ category under 𝐻𝑜 . 

To test 𝐻𝑜  we use the chi-square statics  

𝑥2 =∑
(𝑜𝑖 − 𝑒𝑖)

2

𝑒𝑖

𝑛

𝑖=1

 

The larger the value of 𝑥2 the more likely it is  that the 𝑜𝑖,𝑠 did not come from 𝐹𝑜(𝑥). The 𝑥2 −statistic  

for large samples has a 𝑥2 distribution on (𝓀 − 1)d.f .Thus an approximate level ∝ test is provided by 

rejecting 𝐻𝑜  if  

𝑥2 > 𝑥𝓀−1∝,
2  

(ii)Kolmogoror – Smironv one sample test : For the sample (𝑥𝑖 , … 𝑥𝑛)let the empirical distribution 

function 𝐹𝑛(x) be given by  

𝐹𝑛(𝑥) {

𝑜 𝑖𝑓 𝑥 < 𝑥(𝑖)
𝓀
𝑛⁄ 𝑖𝑓 𝑥(𝓀)  ⪕ 𝑥 < 𝑥(𝓀−𝑖)
𝑖 𝑖𝑓 𝑥 ⩾ 𝑥(𝑛)

 

(𝓀 = 1,2, … 𝑛,−1) whese 𝑥(1), 𝑥(2), … . 𝑥(𝑛) are the  order statistic , Evidently , 

𝐹𝑛
𝑌(𝑥) =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑥𝓀 , 𝑠 (𝐼, ⪕ 𝓀 ⪕ 𝑛) ⪕ 𝑥

𝑛
 

For testing  𝐻𝑂 : 𝐹(𝑥) = 𝐹𝑜(𝑥) against  the two sided  alternative 𝐻𝑖: 𝐹(𝑥) ≠ 𝐹𝑜(𝑥) we use the  

Kolmogoror – Smironv statictic  

𝐷𝑛 =
𝑠𝑢𝑝
𝑥
[𝐹𝑛

𝑌(𝑥) − 𝐹𝑜(𝑥)] 

It can be shown that the K-S  statistic 𝐷𝑛 is completely distribution free for any continouns distribution 

𝐹𝑜(𝑥)  

At level ∝, Kolmogoror – Smironv test rejects 𝐻𝑂  if  

𝐷𝑛 > 𝐷𝑛,∝ 

Whese                                                              𝑃(𝐷𝑛 > 𝐷𝑛,∝) ⪕∝  

Tables of 𝐷𝑛,∝ for given ∝ and n are available 

Remark1:For testing𝐻𝑂 : 𝐹(𝑥) = 𝐹𝑜(𝑥) against one-sided alternatives 𝐻1: 𝐹(𝑥) > 𝐹𝑜(𝑥) or 𝐻2: 𝐹(𝑥) <

𝐹𝑜(𝑥) based on one-sided K.S statistics 𝐷𝑛
+and 𝐷𝑛

− are also available  

Remark 2: For small sample 𝑥2 −test is not available but K.S test can be applied. For discrete distibution 

K.Stest is not availible but 𝑥2 −test can be appled K.S test is more powerful then 𝑥2 −test. 
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(B) The problem of Location: Let (𝑥𝑖 , … . 𝑥𝑛) be a radom sample from a distribution 𝐹(𝑥) with unknown 

median ξ ,where 𝐹(𝑥) is assumed to be continus in the neigbourhood of ξ. By definition of median 

(𝑃(𝑥 ⩾ 𝜉) =
1

2
 .We would like to test the hypothesis  

(x) If n>25, normal appronimution  may be used  

We take                                                         
𝑅−𝑛/2

𝑛/4
~𝑁(𝑜, 𝑖) 

𝐻𝑜: 𝜉 = 𝜉𝑜 against  one sided or two sided alternatioes  

Sign Test: We from the n differences (𝑥𝑖 − 𝜉𝑂)𝐼 = 1,2………𝑛 and find out the number, R,of position  

differences (differences having postive signs ) 𝑖, 𝑒 when (𝑥𝑖 − 𝜉𝑂) > 𝑜. 

If 𝐻𝑂  is true, 𝑃(𝑋𝑖 − 𝜉𝑂 ⩾ 𝑂) =
1

2
, 𝑖 = 1,2, … . 𝑛 and R has a Biomial  distribution with paramer

1

2
 . We  

may use an exect test of𝐻𝑂    based  on the  Biomial Distribution. In the case of one-sided alternative  

𝐻𝑖: 𝜉 > 𝜉𝑜 

The sample will have an excess of positive signs and in the case of  

𝐻𝑖: 𝜉 > 𝜉𝑜 

The sample will have a small number of postive signs  

The signs test based on R, for testing 𝐻𝑂  can be summarised as follows : 

The critical values 𝑅1∝, 𝑅2∝, 𝑅∝/2, 𝑅∝/2 are calculate from tables of Biomaial distribution  

Rajred –sample signs test: Here we assume that we have a random sample of n pains (𝑥𝑛, 𝑥𝑛) giving the 

the differences  

𝐷𝑖 = 𝑥𝑖 − 𝑦𝑖    , 𝑖 = 1,…𝑛 

It is assumed that the distribution of D=X-Y is absolutely continous  with median ξ 

We  have , now a single sample 𝐷𝐼 , … . . 𝐷𝑛 and we can test 𝐻𝑜: ξ = 𝜉𝑜  which  can be taken to be oby the 

sign test descrited above. 

Remark  the above two sign  test s are , repectively  aralogoun to single sample 𝑡 − 𝑡𝑒𝑠𝑡 and paired t-

test for testing location of a normal distribution , 

Two sample problems : let (𝑥𝑖 ,… …𝑥𝑛) and (𝛾𝑖 , ……𝛾𝑛) be independent random sample s from two 

absolutely continous  distribution 𝐹𝑥(𝑥) and 𝐹𝛾(𝓎) , respectively  

Suppose we want to test   

                                                                   𝐻𝑜: 𝐹𝑥(𝑥) = 𝐹𝛾(𝓎) for all 𝑥 

Against                                                 𝐻𝑖: 𝐹𝑥(𝑥) ≠ 𝐹𝛾(𝓎) for same 𝑥 

Run test(Wald –Wolfowitz): we assarge the m, x’s and n 𝛾′𝑠 in increasing order of size 

𝑋𝑌𝑌𝑋𝑋𝑌𝑌𝑌𝑋𝑌and count the numbers of runs .if 𝐻𝑜  is true  the (m+n) values will be well mixed up and 

we expect that R, the total number of runs , will  be relatively large. But R will be small if the samples 

come from differernt popaltions 𝑖, 𝑒 𝐻𝑜  is false in the extreme case , if all the value of y are greater than 

all the value of x, or vice – vera , there will be only two runs  

The run test of 𝐻𝑜  against 𝐻𝑖  at level ∝ is to reject 𝐻𝑜  if  

                                                                            𝑅 ⪕ 𝑅∝  
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Where 𝑅∝ is the largest interteger such that  

                                                               𝑃(𝑅 ⪕ 𝑅∝/𝐻𝑜) ⪕∝ 

It can be show that distribution of R, under 𝐻𝑜  is given by  

                                           𝑃(𝑅 = 2 ∝/𝐻𝑜) = 2 (
𝑚 − 𝑖
∝ −𝑖

) (
𝑛 − 𝑖
∝ −𝑖

) / (
𝑚 + 𝑛
𝑚

) 

And                       𝑃(𝑅 = 2 ∝ +𝑖/𝐻𝑜) = (
𝑚 − 𝑖
∝

) (
𝑛 − 𝑖
∝ −𝑖

) + (
𝑚 − 𝑖
∝ −𝑖

) (
𝑛 − 𝑖
∝

) 

Tables of critical values of R based on above have been given by swed and Eisenhant  

For large m,n(both greater then 10), Ris asymptohcally Normally distributed with  

𝐸(𝑅) = 
2𝑚𝑛

𝑚 + 𝑛
+ 1 

And                                                                  𝑉(𝑅) =
2𝑚𝑛(2𝑚𝑛−𝑚−𝑛)

(𝑚+𝑛)2(𝑚+𝑛−𝑖)
 

Median it test: We arrange the x’s and y’s in asscending order of size and find the median M of the 

contied   sample  let  

𝑉 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑥′𝑠𝑤ℎ𝑖𝑐ℎ 𝑎𝑟𝑒 ⪕ 𝑚𝑒𝑑𝑖𝑎𝑛 𝑀 

If V is large it  is reasomable  to conclude  that the actual median of x is smaller than the median of Y 

𝑖, 𝑒 𝐻𝑜: 𝐹𝑥(𝑥) = 𝐹𝑌(𝑥) is respected  

Hown of 𝐻𝑖 : 𝐹𝑥(𝑥) > 𝐹𝑌(𝑥) − 

On the other hand , if V is too small it  is reamable to condude that the actual  median of X is greater 

than the median of y 𝑖. 𝑒  𝐻𝑜: 𝐹𝑥(𝑥) = 𝐹𝑦(𝑥)is respected  in fovoues of 𝐻𝑖 : 𝐹𝑥(𝑥) < 𝐹𝑌(𝑥) 

For the two sided alternative , we use  the two sided test . 

 The median test can be  summarised as follows: 

It can be shown that the distribution  of V, under 𝐻𝑜  is given by  

                                                                   𝑃(𝑉 = 𝑢/𝐻𝑜) =
(
𝑚
𝑢
)(

𝑛
þ−𝑢)

(
𝑚+𝑛
þ

)
, 𝑢 = 𝑜, 1…… . . , 𝑛 

Where 𝑚+ 𝑛 = 2þ, þ positive integer  

And  

                                                             𝑃(𝑉 = 𝑢/𝐻𝑜) =
(
𝑚
𝑢
)(

𝑛
þ−𝑢)

(
𝑚+𝑛
þ

)
, 𝑢, 1…… .min (𝑚, þ) 

Where 𝑚+ 𝑛 = 2þ + 1, þ𝑖𝑠 𝑎 positive integer  

Wilcoxon- Mann –Whitney U test: This is the most widely used two- sample non-parametric  test and is 

a useful alternative  to the t-test assumotions. 

The test is like the  run test based on the pattern of 𝑚, 𝑥′𝑠  and 𝑛, 𝑦′𝑠 arranged in ascending order of 

size . The Main- Whitney U statistic is  defined  as the number of times as X preades 𝑎 𝑌 In the combined 

sample of size 𝑚 + 𝑛. We define  

𝑧𝑖𝑗 = (
1, 𝑥𝑖 < 𝑦𝑗
0 , 𝑥𝑖 > 𝑦𝑗

(
𝑖 = 1,……𝑚
𝑗 = 1…… . 𝑛

) 
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And write  

𝑈 =∑∑𝑧𝑖𝑗

𝑛

𝑖=1

𝑚

𝑖=1

 

 

Note that ∑ 𝑧𝑖𝑗
𝑚
𝑖=1  is the number of 𝑦𝑗′𝑠 that are  larger than 𝑥𝑖  and hence U is the number of values of 

𝑥𝑖 , ………𝑥𝑛 that are smaller than each of 𝑦𝑖 ,……… , 𝑦𝑛. For example , suppose the contined  sample 

when ordered is as follows : 

𝑋2 < 𝑋1 < 𝑌3 < 𝑌2 < 𝑋4 < 𝑌1 < 𝑋3 

Then U=7, becouse there are three values of X<𝑌1, two values of X<𝑌2 and two values of X<𝑌3  

It is obseved that U=0 if  all the𝑥𝑖′𝑠  are larger than all 𝑦𝑖′𝑠 and U=mn of all the 𝑥𝑖′𝑠  are smaller than all 

the 𝑦𝑖′𝑠. Thus 𝑜 ⪕ 𝑈 ⪕ 𝑚𝑛. If U is large the values of y tend to be larger than X (Y is stochastically larger 

than X) and this supposts the alternative 𝐹𝑥(𝑥) > 𝐹𝛾(𝑥). Similarly, if U is small, the values of Y  tend to 

be smaller than X and this supposts the alternative 𝐹𝑥(𝑥) > 𝐹𝛾(𝑥). 

Thereforer , U-test can  be summarised as follows: 

𝐻𝑜 𝐻𝑖  𝑅𝑒𝑗𝑒𝑐𝑡𝐻𝑜  𝑖𝑓 

𝐹𝑥(𝑥) = 𝐹𝛾(𝑥) 𝐹𝑥(𝑥) > 𝐹𝛾(𝑥). 𝑈 ⩾ 𝐶1 

𝐹𝑥(𝑥) = 𝐹𝛾(𝑥) 𝐹𝑥(𝑥) < 𝐹𝛾(𝑥)  𝑈 ⪕ 𝐶2 

𝐹𝑥(𝑥) = 𝐹𝛾(𝑥) 𝐹𝑥(𝑥) ≠ 𝐹𝛾(𝑥)  𝑈 ⩾ 𝐶3𝑜𝑟 𝑈 ⪕ 𝐶4 

It can  be shown that Under 𝐻𝑂  

𝐸(𝑈) =
𝑚𝑛

2
 

And                                                                    𝑉(𝑈) =
𝑚𝑛(𝑚+𝑛+1)

12
 

The tables of distribution of U for small samples are given by table and Mann-Whitney. For large 

samples U has asymptotic normal  distribution,𝑖, 𝑒 

𝑈 −
𝑚𝑛
2

√𝑚𝑛(𝑚 + 𝑛 + 1)
12

~𝑁(𝑂, 𝐼) 

        APPENDIX 

Distribution of function of random variables (transformations method) 

Therom: suppose Xis a continuous 𝑟, 𝑢 with þ, 𝑑, 𝑓 𝑓𝑥(𝑥). Set 𝑥 = {𝑥,𝑓𝑥(𝑥) > 𝑜}.Let  

(i) 𝓎 = ℊ(𝑥) difine a  d.f  transformation of 𝑥 anto 𝑥 

(ii) the derivative of 𝑥 = ℊ−1(𝑥)  𝜔. 𝑟. 𝑡  𝓎   is continous and non-zero for 𝓎 𝜖 𝑥, where ℊ−1(𝓎) is the 

inverse for of 𝓎(𝑥) 𝑖, 𝑒  ℊ−1(𝓎) isthat 𝑥 for which ℊ(𝑥) = 𝓎  

Then 𝛾 = ℊ(𝑥) is a cont. 𝑟, 𝑢  with þ, 𝑑, 𝑓. 

𝑓𝑦(𝓎) = 𝑓𝑥(ℊ
−1(𝓎)) [

𝑑

𝑑𝓎
ℊ−1(𝓎)] 
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Therom : let 𝑥1 and 𝑥2 be jointly continous 𝑟. 𝑢. 𝑠 with þ, 𝑑, 𝑓 𝑓𝑥1,𝑥2(𝑥1, 𝑥2). Set 𝑥 =

{(𝑥1, 𝑥2): 𝑓((𝑥1, 𝑥2) > 𝑜}Assumu that  

(i)𝓎1, = ℊ1(𝑥1, 𝑥2) and 𝓎2, = ℊ2(𝑥1, 𝑥2) defines i:i transformation of x onto x. 

(ii)The first partical of derivatives of 𝑥1 = ℊ𝑖
−1(𝓎1𝓎2) and 𝑥2 = ℊ𝑖

−1(𝓎1𝓎1) are continous over x. 

(iii) The jacebian  of transformation is non-zero for (𝓎1𝓎1)𝜖𝑥.Then the joint þ, 𝑑, 𝑓 of 𝛾1 =

ℊ, (𝑥1, 𝑥2)and  𝛾2 = ℊ, (𝑥1, 𝑥2)is given by 

𝑓𝛾1𝛾2(𝓎1, 𝓎2) = 𝑓𝑥1𝑥2{ℊ1
−1(𝓎1, 𝓎2)ℊ2

−1(𝓎1, 𝓎2}𝑖𝑗𝑖 

Where  

𝐼𝐽𝐼 = [

∝ 𝑥𝑖
∝ 𝓎𝑖

 
∝ 𝑥1
∝ 𝓎2

∝ 𝑥2
∝ 𝓎1

∝ 𝑥2
∝ 𝓎2

] 

X2- distribution 

Definition : A continous  𝑟, 𝑢, 𝑥 is said to have the X2- distribution on n degrees of freedom if its þ, 𝑑, 𝑓 is 

given by  

𝑓(𝑥) =
1

𝑥𝑛/21(𝑛 2⁄ )
𝑥
𝑛
2
−1𝑒−𝑥/2,   𝑥 ⩾ 𝑜 

= 𝑜                                            𝑥 < 𝑜 

The 𝑚,ℊ, 𝑓 of x is given by  

𝑀𝑥(𝑡) = 𝐸𝑒
𝑡𝑥  

=
1

𝑥𝑛/21(𝑛 2⁄ )
∫ 𝑥

𝑛
2
−1

∞

𝑜

𝑒𝑥(1−2𝑡)/2𝑑𝑥  

=
1

𝑥𝑛/21(𝑛 2⁄ )

1(𝑛 2⁄ )

(
1 − 2𝑡
2

) 𝑛/2
 

= (1 − 2𝑏)−𝑛/2 

From this we can earily show that               

                                                                          𝐸(𝑋) = 𝑛 𝑎𝑛𝑑 𝑣(𝑥) = 2𝑛  

For 𝑛 ⪕ 2the þ, 𝑑, 𝑓 of 𝑥2(𝑛) steadily  dencress as 𝑥 iscrese  while for 𝑛 > 2 there is a uniqne  maximum  

at 𝑥 = 𝑛 − 2 

Theorom : Let 𝑥1, 𝑥2…… . . 𝑥𝑛 be n independent standand  normal r,v,s 𝑖. 𝑒  𝑥𝑖~𝑁(𝑜, 1), 𝑖 = 1,… 𝑛  Then 

𝑦 =
𝑛

2
𝑥𝑖
2 has a X2- distribution on  𝑛, 𝑑, 𝑓. 

Proof:  Let X be 𝑁(𝑜, 1) the 𝑚,ℊ, 𝑓 of 𝑥2  is given by  

𝑀𝑥2 = 𝐸(𝑒
𝑡𝑥2) 

=
1

√2𝜋
∫ 𝑒𝑡𝑥

2
− 𝑥2/2𝑑𝑥

∞

−∞

 

=
1

√2𝜋
∫ 𝑒𝑡𝑥

2
− 𝑥2(1−2𝑡)/2𝑑𝑥

∞

−∞
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=
√2𝜋

√1 − 2𝑡)

1

√2𝜋
 

= (1 − 2𝑡)−1/2 

 

Which show that 𝑥2~𝑥2(1) Then , the 𝑚, ℊ, f  of 𝛾 = ∑ 𝑥𝑖
2𝑛

𝑖  is given by  

𝑀𝑋2(𝑡) = [𝑀𝑋2(𝑡)]
𝑛 = (1 − 2𝑡)−𝑛/2 

Which shows that 𝛾~𝑥2(𝑛)   

Therom : Let 𝛾1, 𝛾2 … . 𝛾𝑛 be indepent 𝑟, 𝑢, 𝑠  with  X2- distribution on 𝑛𝑖 , …… . 𝑛𝓀  degrees of freedom  

resp . 

Then 𝑧 = ∑ 𝛾𝑖~𝑥
2(𝑛1 + 𝑛2+. . +𝑛𝓀

𝓀
𝑖 ) 

Proof :the 𝑚,ℊ, 𝑓 Z                                                   

                                                                                     𝑀𝑍(1) = 𝐸𝑒
𝑡𝑧 

= 𝐸𝑒𝑡∑𝑌𝑒

𝓀

𝑖

 

=∏𝐸(𝑒𝑡𝑦𝑒)

𝓀

𝑖=1

 

                                                                       = (1 − 2𝑡)−(𝑛𝑖+..+𝑛𝓀)/2 

Which about that y~𝑥2(𝑛𝑖 +⋯+ 𝑛𝓀) 

Crollanj : Let (𝑥𝑖 , … . . 𝑥𝑛)be a random simple from a Normal distributuion 𝑁(𝜇, 𝜎).Then ∑
(𝑥𝑖−𝜇)

2

𝜎2
𝑛
𝑖=1  has 

𝑥2 distribution on 𝑛, 𝑑, 𝑓. 

Therom: Let (𝑥𝑖 , … . . 𝑥𝑛)be a random simple from a Normal distributuion 𝑁(𝜇, 𝜎) Let 𝑥̅ = ∑ 𝑥𝑖/𝑛
𝑛
𝑖  

And 𝑠2 =
1

𝑛−𝑖
∑ (𝑥𝑖 − 𝑥̅)

2𝑛
𝑖  be the sample mean and sample variance. Then 

(𝑛−𝑖)𝑠2

𝜎2
 has 𝑥2 distribution on 

(𝑛 − 𝑖)𝑑, 𝑓. 

Therom: For large 𝑛, √2𝑥2 can be shown to be approximately normally  distributred with mean √2𝑛 − 1 

and st-dearation unity. 

Therom: Assume that y has distribution function 𝐹𝑌 which satifies some regularity conditions ad which  

has r-unknown parameters 𝜃1, 𝜃2… . 𝜃𝑟  and that (𝑦𝑖 , . . 𝑦𝑛) is a random sample of y.Let 𝜃𝑖̂, 𝜃𝑟̂ be the  

𝑚. ℓ, 𝑒 of 𝜃′𝑠 .Suppose the sample is distribution  in 𝓀 non-orerlapping  intervals {𝐼𝐽}                             

where 𝐼𝐽 = {𝓎: 𝑎𝑗−𝑖 < 𝑦 < 𝑎𝑗−𝑖}, 𝑗 = 1,…𝓀(𝑎𝑜 = −∞𝑎𝓀 = ∞and . Let 𝑥𝑖 ,… . . 𝑥𝓀 be the number of 

sample values falling in these inervals, respectively if me define  

𝑝𝑗̂ = 𝑃{𝑌𝑓𝑎𝑙𝑙𝑠 𝑖𝑛𝐼𝐽}, 𝑗 = 1,…𝓀  

Where 𝜃𝑖̂, 𝜃𝓀̂ replace 𝜃𝑖 , 𝜃𝓀 in 𝐹𝑦 ,then the distribution of the statistics 𝑧 = ∑
(𝑥𝑗−𝑛𝑝𝑗̂)

2

𝑛𝑃𝑗̂

𝓀
𝑗=1 Lerger is 

appoximately distributed as 𝑥2on 𝓀 − 𝑟 − 𝑖 𝑑, 𝑓 as n gets 

Students t-distribution  

Definintion : A Continous 𝑟, 𝑢, 𝑥  is said to have the t-distribution on 𝑛, 𝑑, 𝑓 if its þ, 𝑑, 𝑓 is given by  
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𝑓(𝑥)
[(
𝑛 + 1
2

)

[(
𝑛
2
)√𝑛𝜋

1

(1 +
𝑥2

𝑛 )
𝑛+1
2

, −∞ < 𝑥 < ∞ 

 

Remark : For 𝑛 = 𝑖the þ, 𝑑, 𝑓 

𝑓(𝑥) =
1

𝜋

1

𝑖 + 𝑥2
, −∞ < 𝑥 < ∞ 

Which shows that it is a couchy distribution We will therefore, assume that 𝑛 > 𝑖 

 Remark:the þ, 𝑑, 𝑓 of t-distribution is symmctric about again. For large n the t-distribution tends to 

Normal  distribution. For small n hawever t-distribution deviates considerally from the normal in fact if 

𝑇~𝑡(𝑛)and 𝑧~𝑁(𝑜, 𝑖) 

𝑃{[𝑇] ⩾ 𝑡𝑜} ⩾ 𝑃{[𝑍] > 𝑡𝑜} 

Moments : Since the distribution a symmetrial  about origin 𝜇2𝑟 + 1 = 0 

For 2r<n 

𝜇2𝑟 = 𝐸(𝑋
2𝑟) 

=
2[(

𝑛 + 1
2

)

[(
𝑛
2
)√𝑛𝜋

∫
𝑋2𝑟

(1 +
𝑥2𝑟

𝑛
)
𝑛 + 1
2

𝑑𝑥

∞

𝑜

 

Therom : Let 𝑥~𝑁(𝑜, 1) and  𝑦~𝑥2(𝑛) and Let 𝑥and 𝑦 be independent .Then 𝑈 =
𝑥

√𝑦/𝑛
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