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We know that statistical data is nothing but a random sample of observations drawn from a
population described by a random variable whose probability distribution is unknown or partly
unknown and we try to know about the properties of the population on the basis of knowledge of
the properties of the sample. This inductive process of going from known sample to the unknown

population is called ‘Statistical Inference

Formally, let x be a random variable describing the population under investigation. Suppose X has
p.mf f,(x) = P(x = x) or p d f f, (x) which depend on some unknown parameter 6 (single or vector
valued) that may have any value in a set Q (called the parameters space). We assume that the
functional form of f,(x) is known but not the parameter 8(except that 8 € Q). For example, the
family of distributions {f3(x),0 € Q} may be the family of Poisson distribution {P(1),4 = 0} or

normal distribution {N(u, 62),—00 <u < 00,0 > 0}

Two problem of statistical inference are-

1. To estimate the value of 8 — problem of estimation

2. To test a hypothesis about 8 - problem of testing of the hypothesis
POINT ESTIMATION

Definition: A random sample of size ‘n’ from the distribution of X is a set of independent and
identically distributed random variables {x;, x,, ..., x,} each of which has the same distribution as

that of X. The probability of the sample is given by

fo(xllle ---ixn) =fo (xl)fo(xz) e fo (xn)

Definition: A statistic T = T (x1,X2,.., Xa) is any function of the sample values, which does not

depend on the unknown parameter 6. Evidently, T is a random variable which has its own

probability distribution (called the ‘ Sampling distribution’ of T)

_ 1 1 _ .
For example, X = Yl s = EZ?(xi — x)? Xy = mm(xl,xz, ...xn) Xy = max(xl,xz, xn) are

some statistics.

If we use the statistic T to estimate the unknown parameter 6, it is called the estimator (or point

estimators) of 8 and the value of T obtained from a given sample is its ‘estimate’

Remark: Obviously, for T to be a good estimator of 6 , the difference [T — 6] should be as small as
possible. However, since T is itself a random variable all that we can hope for is that it is close to 8

with high probability.



Theorem : Let (X, Xz,...,Xn) be a random sample of ‘n’ observations on X with mean E(X) = ¢ and

: . _ 1 1
variance Var(x) = o2 Let the sample mean and sample variance be x = Y*x;and s? = ;Z(xl- —x)?

Then,

(DEX)=p

(v (D=2
(ii)E(S?) = =02

Prof: We have

E(X_)=E<%ixi> =%iE(xi) =

V() = V(%le) =n—1zzr_lvoci) - %2

E(ns?) = EZ(xl- — x)?
=) It - ) - G = )]
1

=E

> G- w? —ni - #)2]

= E(x; —)? —nE(x — p)®

=no?—no?/n
=(n-1)c?

n—1 )

E(s?) = o

PROPERTIES OF ESTIMATORS

UNBIASEDNESS:

An estimator T of an unknown parameter 8 is called unbiased if

E(T) =6 forallg € O



Example. If (x4, %5, ..., x,) is a random sample from any population with mean u and variance o2,
the sample mean X is an unbiased estimator of u but the sample variance S? is not an unbiased

estimator of 2.

ns? 1 2 . . .
However, ~— = —37(x; — %)? is an unbiased estimator of ¢ 2.

Ex. if (xq,x; ..x,) is a random sample from a normal distribution N(u,I) show that T =

1 . . .
;Z? x;%> — 1 is an unbiased estimator of u? ,

Soln. E(T) = E [2¥Px2 — 1] =2 E(?) — 1

n

E(x2)= V(x)+E(x)= (u* + 1)
1 n
= El W+ -1=p°

Example: Let (xq,x; ..x,)be a random sample of observation from a Bernoulli distribution
fo(x) =6*(1—6)'*(x =0,1) show that T = % is an unbiased estimator of  where y = }.I' x;
Soln: We know that E(x;) = 8 and V(x;) = 0(1 —6) sothat E(Y) =n6andV(Y) =n6(1—0)
Now
E(Y(Y - 1) = E(Y?) — E(Y)
=V()+[EM)]* - E(Y)
=n8(1—0) +n?6? —no
=n(n—1)6?
Y(r—1)

E(T)=E [0 = 2

n(n-1)
Showing it to be an unbiased estimator of 82

Example: Show that the mean X of a random sample of size n from the exponential distribution

fo(0) = %é% (x > 0) is an unbiased estimator of 8 and has variance 62 /n
Soln: We know that

E(x;))=0andV(x;)) =6?(i=1,..,n)

E(X)=06and V(X) = 6%/n

Example: Let (x;,x; ..x,)to a random sample from a normal distribution with mean 0 and

variance 8 (0< # < o) so that T = Y, x?/n is an unbiased estimator of # and has variance 262 /n



Sohm we know that

E(x)=0,E(x?)=V(x) =6

n

E(T) = %Z E(x?) =6

i

Also E(x}) = py = 362

V(T) =V (%z x?)

1

n
1 2
ONLED
i

_ %Z[E(x?) —{E(x?)Y]

1 n
=— ) 1367 — 7]
n i

_ 262

Example Let (x1,x, ..x,) be arandom sample from the rectangular distribution R(0,8) having

b.d f fe(@={+,o£x£9(9>0)

0 ,otherwise

Show that T, =2Xx, T, =nT+1Yn and T3 = (n+ 1)y; are all unbiased for 6 , where Y; =

min(xq, X, ...Xp) and ¥, = max(x, Xz, ... Xp)
Soln: We know that

E(x)=6/2and V(x) = 6%/12

™ x; e
E(T) =E?2 (Z‘ L) =60 and V(T}) = —
n 3n

To obtain the expectation of T, and T3 we need to obtain their distribution.
The d. f. of Yn is-
Fy(y) =P(Yn <)
= P(max(xy, X, ... X,) < %)

=P(x; Ly, xn K ¢)



b, d,f of Y, is- gY, (y) = %

0 ,elsewhere

Hence, E(Y,) = f:%y) = (#)9
Or E(®y,) =40

So that T; is unbiased for 6

2
[We can check that V (T2) = e +2)]

Again, the d. f. of Yi is-
Fy,(y) = P{Y; < ¢}
= P{min(xl,xz’ wXp) < y»}
=1—P{x; >y,x,>y,..x, >y}

=]—-[I-PX <y|"

_ Y
=1-[r- 5]
b, d, f of Y;is
nO®—-¢)"1L,024<0
g’n(’@y’) = gn
0, elsewhere
Hence, EY;) = fe%f)nldy
_n (6 — y)" f n
= gn{ £ — (6 —y)'dy
1 (9 y)n+1
n+ T n+1 o
B 6
T n+1

So that E(T;) =E[(n+1)Y;] =06



n
heck that V(T;) = —— 67
we can chec at V(T3) ——

sothat V(T,) <V(Ty) <V(T3)

Example: Let ((xl, Xp, .o xn) be a random variable from the Rectangular distribution R(6, 26) having

b.d,f

1
f(x,0) = —p 0= x<20

0,elsewhere

n+1 n+1

Show that T, = EX(n), T, = EX(Q
n+1 2 _ .
And T; = E—, [Zx(n) + x(l)]and T, = Sxare all unbiased

Soln: We can show that the distribution {x,)dx;) have p, d, f given by

n(y —6)" "

feo W) =——n——=0<y <20
n(20 —y)* !

frwy (@) = ——gn 9=y <20

Example: Let y,,y,,¥; be the order statistics of a random sample of size 3 from a uniform
distribution having p,d, f f(x,0) = % (0 < x < 0) show that 4y, 2y, , §y3 are all unbiased estimator

of 8. Also obtain their variance.

Soln: We can show that Y3, Y,,Y; have p,d, f

3(60 —y)
frly)=—Fpz—=0<y<6
640 —y)
fray) =—p5—=0<y<6
3y?
fY?)(’@/’):e?, :OSy)SQ

E(yy) = 6/4E(y;) = /2 E(X3) = 3/4g
V(y:1) = 362/80,V(y,) = 62/20,V(y;) = 36°/80

*If v.,V,, ..., J, are two unbiased estimator with variance ¢2,02 and correlation coeff. P between
1Y2 n 1,02

than the linear combination which is unbiased and has minimum variance is.

(0F — P010))Y; + (0f — 9010,)Y,

V= 02 4+02-2
1 2 9010,

*If y1,¥2,...,Yn are ind ept unbiased estimators if 8 with variance al-z(i = 1,2..n), the linear

combination with minimum variance is
Y = /213’1 + 'szkz + ‘l”kn'kn

Where



g

ki == XMi/o?)

Le Y= T 1 T
>ttt

[z
1 2 n

Example Let ‘T’ be an unbiased estimator of 8. Does it imply that T? andVT , are unbiased for
0%and ,/0) respectively?

Soln: V(T) = E(T?) — [E(D)]?

IfE(T?) = 62, then V(T) = 0so that P (T = 6) = 1 which is impossible since T has to be of
independent of 6.

Also, V(VT) = E(T) — (ENT)?

If E(VT) = /6, then V(VT) = o so that P(/T) = ,/8) = 1 = P(T = 6) which is impossible.

Example let y,,y,, be independent unbiased estimator of 8, having finite variance (¢Z, 07, say).

Obtain a linear combination of y;, y, which is unbiased and has the smallest variance.
Sohn LetY = £y, + £'y,
Evidently, £ + £ =1or&' =1— £
Then V(Y) = V[ky; + (1 — £)y,]
= f%cf + (I — k)?0%

Minimising V(Y) w.r.t. £, we get

Or 2af —2(1 — £)o? =0

* =03 /(of + 03)
The linear combination with minimum variance is
1 1
v < o’ > N ol o2t o}f
= V1 V2 =
of + o} (of +02) 1 iz

_2 +
0y 03

v

Note : if 67 = 207 then £=1/3

Remarks: (i) An unbiased estimator may not exist. Let x be a random variable with Bernoulli

distribution.

fo(x) =6*(1-0)1*x=0,1



It can be shown that no unbiased estimator exists for 62.
(ii) Unbiased estimator may be assured.

Let X be a random variable having Poisson distribution P(x) and suppose we want estimator g(4)

3

=e3*. Consider a sample of one observation and the estimator T= . Then E(T)= e =3 so that T is an

unbiased estimator of e =34 but T(x)= (-2) X for x even and T(x) < 0 for x odd, which is absurd since
i

e~ 3% is always positive.

(iii) Instead of the parameter 6 we may be interested in estimating a function g(6). g(6) is said to

be ‘estimable’ if there exists an estimator T Such that E(T)=g(6), 0 € 2.

Minimum Variance Unbiased (MVU) estimators : The class of unbiased estimators may, in

general, be quite large and we would like to choose the best estimator from this class. Among
two estimators of 8 which are both unbiased, we would choose the one with smaller variance.
The reason for doing this rests on the interpretation of variance as a measure of concentration

about the mean. Thus, if T is unbiased for 6, then by Chebyshev’s inequality-

Var(T)
82

P{IT-0]1<e}>1-

Therefore, the smaller Var(T) is, the larger the lower bound of the probability of concentration of T
about 6 becomes. Consequently, within the restricted class of unbiased estimators we would choose

the estimator with the smallest variance.

Definition: An estimator T =T (Xj,..., Xn) is said to be a uniformly minimum variance unbiased

(UMVU) estimator of 8 (or an estimator for g(6) if it is unbiased and has the smallest variance
within the class of unbiased estimators of 8 (or g(6),) of all 8 € . That is if T is any other

unbiased estimator of 6, then-

Var(T) < Var(T')forall 6 €

Suppose we decide to restrict ourselves to the class of all unbiased estimators with finite variance.
The problem arises as to how we find an UMVU estimator, if such an estimator exists. For this we
would first determine a lower bound for the variances of all estimators (in the class of unbiased
estimators under consideration) and then would try to determine an unbiased estimator whose

variance is equal to this lower bound. The lower bound for the variances will be given by the

Cramer-Rao inequality for which we assume the following regularity conditions:
Let X be arandom variable with p.d. f f(x;6) 68 €
(i) 2 is an open interval (finite or not )

(ii)f (x; 0) is positive on a set S independent of 6.

(iii) %f(x; 0) exists for all 6 € 2



() 7[5 F (0, 0)f (2, 0) oo f (, 0)dixy, %o, by,

May be differentiated under the integral sign.

(v)f_ f_ T (21, %2, - Xn) f (%15 0) oo f (Xn; 0)dx1, Xs,....dix

May be differentiated under the integral sign where T (X1, X») is any unbiased estimator of 8

Cramer-Rao _inequality: Let (Xj,.., X.) be a random sample of n observations on X with
b.d.f f(x;8) and suppose the above regularity conditions hold. If T is any unbiased estimator of 8,
then-

1

Var(T) < 3 >
E [ﬁlog f(x;0)

Proof: We have

00
f flx;0)dx; =1;i=12..n

—00

Which gives, on differentiating.w.r.t 6
® 9
Lm%f(xi,e) dxi =0
]

or 1%, |2 10g £ (i 0)| £ 0)dx; = 0 ... (4)

]
Or E [ﬁlogf(xi;e)] =0 ... (1)

Also, since T is unbiased estimator of 8, we have

E(T) = f f TGy 2)f Ce 0)... f Gy, 0)dix; .., = 6

—00 —00

Which given on differentiation w.r.t.0

E(T) = f f CHERES [1_[ f(xL,B)] dx; o dty =1......(2)

—00— 00

But

a6 nf(xu = Z [69 (x;;6) nf(x“ 9)]
Z [f(xl,e) ag s 0) nf(xlﬂ)]




[Z logf (x;; 9)] Hf(xl, 0)

So that (2) becomes

Or E(TZ)=] o (3)

Where
U
z 3509 Cxi; 6)
i=1
From (1) we immediately get

E(Z) = i E [aa—glogf(xi; 9)] =0 (4)

i=1

And
Var(z) = zn: E [%logf(xlﬂ)]z
=
5 2
— nE [%log s 9)] e (5)
Now, Cov(TZ) = E(TZ) —E(T)E(Z)
=1

. . : : 1
(i)An unbiased estimator T whose variance equals the lower bound

If and only if T is if the from T = 6 + b where z = Z?:l%lng(x, 0)

Proof:

1

E [%logf(x, 9)]2

V(T) =

I $
R(T,Z) =1

e, if Tis alinear #unction of Z, say

T=a9+b9Z

f f TCx, xn)lz logf(xue)]f(xl,@) S G, ) .ty = 1

nE[:—elogf(x,G)]z

10
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But E(T)=ayg =6
i.e T=0 + ng

Let (x4,..x,) be arandom sample from R (0, 8)

1
f(x,0) =5,0 <x<6

0 100f0e6) <
9909/ (%0 =5

E [aa—elogf(x, 0)]2 = %

92
n

CRB=

We know that T = nTHX(n) is UMVUE whose variance is-

02 92
V()= —m/m — < —
0 nn+2) n
Therefore, we have P(T,Z) = Cov(T,.Z) 1

V(TV(Z)  V(T)V(2)
Since P(T,Z) < 1 we get

1

V(T) = .
nk [%logf(x. 9)]

Remark: (i) the left page

(ii) If g¢(0) is an estimable function for which an unbiased estimatoris T (i.e. E(T) = g(0))

then C.R Inequality becomes-

[9(0)]*

nk [%logf(x. 9)]2

V(T) =

(iii) It can be show that

E [%logf(x; 9)]2 =—E [%logf(x;@)]

(iv) If an unbiased estimator exists which is such that its variance is equal to the lower bound
1

CRB= 5
nE[ﬁlogf(x.Q)

= then it will be UMVUE.

(v) If there is no unbiased estimator whose variance equals the C R B it does not mean that

UMVUE will not exist. Such estimators can be found (if these exists ) by other methods.
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(vi) In case of distributions not satisfying the regularity conditions (e.g.: Rectangular distribution)
UMVU estimators, if these exists can be found by other methods. For such cases UMVU estimator

may have variance less than CRB.

Example: Let (x;,...x,) be a random sample from a Bernoulli distribution f(x;0) = 6*(1 —

0)1*(x=0,1),0< 6 <1

Show that ¥ = %Zf‘ x; isaUMVU of 6

Sohn : log f(x;0) = xlogf + (1 — x) log(1 — 6)
al ( 6’)_x 1—x
a9 09/ %6 =5-74
_ x—0
(1 -0)
So that

0 2 E(x—0)?
E [%logf(x.e)] = 92(1-0)

_ 6(1-6)
T 92(1-6)2

_ 1
T 9(1-9)

: . 6(1-6)
By CR inequality we have CR B =———

Now, E(X) = 8 and Var (x) = @ that is equal to C R B. Hence X is UMVUE of 8

Example: Let x be a random sample having Binomial distribution
fo0)=(7)6* -0 x=01,.,m0<6<1)

Show that X/, is UMVUE of 6.

Soln: logf(x,0) = log (7;) + xlog6 + (m — x) log(1 — 6)
0 ] (x.6) = x N m-—x
ag 09O =5+7 5
X mo
S 8(1-06)
) 2 __ E(x-m6)?
So that E [£ logf(x, 9)] = m
_ mo(1-6)
T 62(1-6)2
m

= 9(1-6)
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For sample of one observation X let T=T(X) be an unbiased estimator. The C.R.B is %. Now

E (%) = 0 and Var (x) 9(1 9) S0 that— is UMVUE of 9 (see left page)

Example: Let (x1,.., Xn) be a random sample from a Poisson distribution

e 9%
fx8)=—— x=01....(6>0)

Show that x is UMVUE of 6.

Soln: logf(x,0) = —0 + xlog6 — logx;

g —logf(x,0) =—I +—

20 0
_x—0
)
E(x,0)?
E[ﬁlogf(x 0)] 02

1

The CRB =9/,
Now E(%X) = 6 and Var(x) = % so that X is UMVUE of 8

Example: Let (xq,..,x,) be a random sample from a normal distribution N(8 ,02) where
variance ¢ is known show that X is UMVUE of 6.

_(x-6)?
Soln: f(x,0) = \/% %

1 (x — 6)?
\/m) - 202

log f(x,0) = log(

Or logf(x 0) = (x 6)

d 2 E(x—6)?
E[%logf(x,e)] :xg—4

2
The CRB= 9"/,

NowE(x) =0 andV(x) =9 /n so that x is UMVUE of 8

Example Let x4,..,x, be a random sample from a normal distribution N (g, 8) where p is known
and @ is that variance to be estimated. Show that s? = Y,/'(x; — 1)?/n is UMVUE of 6

(e-pw)?

Soln: f(x;0) = %e_ 26

—u)2
log f(x;0) = log\/%_%logg _%

Gx=w?
Or —logf(x 0) = + v
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_(x-w? -6
B 262

E[(x — w)? - 6]*
40%

E [626 log f (x, 9)]2 =

_E(x—w)?*—20E(x —pu)* +6°
B 464

392 — 262 + 67
49*

The CRB= 20°/,
. . 5 X(xi—p)? . 262 .
Consider the estimator S* = EE— for which E(S2)= 6 and V(SZ):T so that Sz is UMVUE of 8

Example An UMVU estimator is unique, in the sense that if To and T;are both UMVU estimator
then To = T\ almost surely (i.e P(T, # T;) = 0)

Soln: Since both Ty and T; are unbiased
E(T,) = E(T;) =0 forall9 e 2
And since both are UMVUE,
V(T,) = V(T)forall 6 € 2

Consider the new estimator
1
T = E (To +Tp)

Which is also unbiased. Moreover,

V(T = 2 V{To) + V(T + 20 VTV )

Where p is the corr. Coefficient between T, and T;
I+p
V() = —=E V(T

By definition, V(T) = V(T,). It follows that p > I. Therefore p =I so that, for every 6,T, and T, are
linearly related, i. e.

TO =a+ bTI
Where a, b are amstants (may depend on 8) and b> 0. Taking expectation and variance we get

0 =a+bo }
V(To) = b2V (T)

Which imply that b=1 and a = 0. Therefore

CONSISTENCY

Definition: A sequence of estimator {T,}.n = 1,2, ... of a parameter 6 is said to be consistent if, as
n—>00
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T, — p 6 for each fixed 0 € (2 thatis, for any e(> 0)
T,, converges to 0 in probablity
Or P{|T,— 60| >€} -0
Or P{IT,—0| <€} -1
asn— o
Remarks:
(i) For increase in sample size a consistent estimator will become more and more close to 8

(ii)Consistency is essentially a large sample property. We speak of the consistency of a sequence of
estimators rather than that of one estimator.

(iii) If {T;,} is a sequence of estimator which is consistent for 6 and {C,},{g,} are sequence of
constants such thatC,, - 0 g —» 1asn — oo then {T;, + C,} and {g¢,T,} are sequences of consistent

estimators also.

(iv) We will show later that if {T,,} is a sequence of estimators such that E(T,) - 6 and V(T,) -

0 and n — oo then {T,,} is consistent.
Examples:

1. Let (xq,..x,) be a random sample from any distribution with finite mean 6. Then it follows

from LLN that X¥ so that x = is consistent for 8. If the distribution has finite variance

(62,say) V(x) = Uz/n — 0 so that it follows from Remark (IV) that X is consistent .it can be
shown that the sample median is also consistent for 6
2. Suppose (x4, ..., x,,) is a random sample from N (u, 52).

Let

n

x= zxi/n

1

n

s? = EZ(Xi —X)?

1

n
1 n
2 _ %2 — 2
S (n—1)Z(X' %) n—1°

4 The following is an example of an estimator which is unbiased but not consistent

Let (xi,..x,) be a random sample from rectangular distribution.R(0,0) and let Y; =

min(xy, ... x,) consider the estimator T = (n + 1)Y;. This is unbiased . Now for a any E (> 0),

(-l =)
P n+1l " n+1




0 €
n+l1l n+1
0 N €
1
_ i ag_smm+1 n+1
_en[e /y')] 2] €
n+1 n+1

1 mb+e)" —(nb+ e)"]
~on (n+ 1"

n

n ENT e\"
=(n+1)n[(1+ﬁ) _(1_E)]

Which is some fixed number
P{[T —0]e} +1
Thus, T is not constant

We can show that

n—1 20%(n—1
o2 p(s) =22 =D

E(s?) = 2

20

E(s'z) =¢g?, V(s'z) = T

n
By remark (iv) above s? + s” are both constant for 02, s? is biased and s”* is unbiased.

3. Let (x4, .....x,) be for arandom sample for gamma distribution

X -
f(x,0) = e 1(x >6,0 > 0)p known

oPr(p)

Show that X/p is unbiased and consistent for 8
Soln: E(X/p) = 6, V(X/p) = j—b 50

X/p is unbiased and consistent

Theorem: If {T,,}_is a sequence of estimators (of §)such that
E(T,)=06,-0

And V(T,) = 0

As n—oo then {T,,} is consistent estimator of 6.

Proof: By Chebyshev’s inequality, for any e(> 0)we have

E(T, — 0)?

P{Ty = 01> €} <—"

1
= E_ZE[(Tn —6,) + (6 — 6)]2

= E—le[(Tn = 0n)" + (00 = 6)° +2(6, — O)(T,, — 6)]

16
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1
= L V(T,) + (6 — )*] 0
As n—o0 by given condition of the theorem so that T, is consistent for 6.

Theorem: If{T,}is a sequence of consistent estimators of 8 and g(8) is a continuous function of 6,

then {g(T,)} is consistent for g(6)
Proof: Since T, is consistent for 8, for any €, (> 0)
P{IT, -0l <€} -1
As n—oo
Also, since g(8) is a continuous function , given e(> 0)we can choose €; (> o)such that
T, — 6l <€ = |g(Ty) —g(0)] <€
Therefore,
P{IT, — 0] < &} < P{|g(Ty) — g(8)| < €}
But as n—oo, L.H.S — 1 and, consequently, RH.S =1, i e.
P{lg(Ty) —g(0)| <€} - 1
As n—oo. Hence ¢(T,) is consistent forg(0).
We can prove the following results:
(i) If {T,} is consistent for, then T;? is consistent for §2.
(ii) If {T, } is consistent for 8(R and non-negative) then \/T—n is consistent for V6.

Proof For any e(> 0) we have

P{IT, — 6] 2 e}P{| (T, — O (T, —/0)| = €}

=P{|ﬁ—m|2ﬁ}

2P{|\/T—n—\/§| zie}

Since L. H. S—0,R. H.S -0 as n—o
(iii) If {T,} is consistent for 8 and {T',,} is consistent for @', then {T,, + T',} is consistent for 6 + 8'.
Proof: for any e(> 0),we have P{{(T,+T,)— (0 +06) =€}

<P{T,—0|+|T',—0'| =€}
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<pP{|r, -6 25| uiT, -0 2 €}
< P{IT, -6 2+ P(T, - 61 2 -0

As n—oo.
There fore {T, + T',,} is consistent for (6 + 8")
(iv)if T,, and T',, are consistent for 6 and 6’ respectively, T, T',,is consistent for 66'.

Proof: we can write

_ (Tn + T’n)z - (Tn - T’n)z

T,T', 2

b (0 +6% — (6 —0)?2
- 4

EFFICIENCY:

If T; and T, are two unbiased estimators of a parameter 6, each having finite variance T; is said to

be more efficient then T, if V(T;) >V (T,). The (relative) efficient of T; relative to T, is defined by

_V(1)
Eff(Tl/TZ)_V(Tl)
It is used to judge the efficiency of an unbiased estimator by comparing its variance with the

Cramer- Rao lower bound (CR B).

Definition: Assume that the regularity condition of CR inequality hold (we call it a regular situation)
for family{f(x,6),6 € 02}. An unbiased estimator T* of 8 is called most efficient if V(T™*) equals the

CRB. In this situation, the ‘efficiency’ of any other unbiased estimator T of 8 is defined by

Where T* is the most efficient estimator defined above
Remarks:
(i) The above definition not proper in—

(a) regular situation when there is no unbiased estimator whose variance equals the CRB

but an UMVUE exists and maybe found by other methods.
(b)Non-regular situations when an UMVUE exists and may be found by other methods

(ii)The UMVUE is ‘most efficient’ estimator in the examples considered earlier all UMVUE, whose

variances equalled CRB are most efficient
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Example Consider a,r,s(x4, ... X,) from a normal distributionN (u, ) where mean y is known and

variance 6(0 < 6 < o) is to be estimated

We has seen that s = % "(x; —w)? is UMVUE of @ for which the variance is equal to CRB and

) _
21X — X)?

2

consequently, s? is most efficient . Let s'? =

2
Then E(S§'?) = 6 and V(5'?) = % so that the efficiency of s'2 is given by

, 20%/n
Eff(s 2) = —292/(n_1)

_n—1

n

Asymptotic efficiency: As different from the above definition of efficiency we may define efficiency

in another way as follows, which may be called asymptotic efficiency.

Let us confine ourselves to consistent estimators which are asymptotically normally distributed.
Among this class, the estimator with the minimum asymptotic variance is called the ‘most efficient
estimator’. It is also called best asymptotically normal (BAN) or consistent asymptotically normal
efficient (CANE) estimator it we denote by avar(T*) the asymptotic variance of a BAN estimator T*
then the efficiency of any other estimator T (within the class of asymptotically normal estimators) is

defined by

avar(Tx

Eff(T/T")= 22l

avar(T)

Where avar (T) is the asymptotic variance of T.

Example: Let (xq,..,x,) be a random sample from a normal distribution N(u, o), Consider the
‘most efficient estimator X and another estimator Xm.. It can be show that both are CAN estimator.
We have

2

o
V(x) =—
n
_ 7T o2
And V(xme) = n

So that the efficiency of x,,, is given by

2
Eff(%;me) ::;;

Example: let T;, T, be two unbiased estimators of 8, having the same variance. Show that the
correlation coefficient p between Ty, T, cannot be smaller than 2e-1, where e is the efficiency of each
estimator,

Proof. Let T, be the most efficient estimator then

V(To)

V(Ty) =V(Ty) =

Consider the unbiased estimator
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T+ T,
2

Its variance is V(T) = i[V(TJ + (T2) + 2p\[V(T1)(T2)]

[0 VD |, V)
B e e p e

I+p
=—V(T,

Since T,is UMVUE, V (T)= V(T,) which gives

0. >2¢e—1
e -
5 21 or p=2e

Example: let T, be an UMVME (or most efficient estimator) where T; an unbiased with efficiency ‘e’.
If p is the correction coefficient between T, andT;, then show that p =+/e.

Soln: we have

e =V(To)/V(T1)
Or V(Ty) =V(T,)/e
Consider the estimator

_ (1 —pVe)T, +Ve(e—p)T

T
1-2pJe+te

(Which the linear combination of T,, T; with minimum variance) then T is also unbiased, having
variance

+2v/e(Ve — p — pe — p*Ve)p [%]

[1—2pVe +e]?

_(1-2pVe+e)(1-p?)
- (1-2pVe+e)?

_ =p?v(m) _ 1-p?
Or v = 1-2pVete  (1-p2)+(Ve—p)? V(T

Since (1 — p?) and(+/e — p are both non-negative V(T) < V(T,) but since T, is UMVUE, V(T) V(T,).
therefore V(T) = V(T,),and p = Ve

SUFFICIENCY CRITERION:

A preliminary choice among statistics for estimating 8, before having for a UMVUE as BAN
estimator, can be made on the basic of another enter on suggested by R.A fisher. This is called
‘sufficiency’ criterion.

Definition: let (x4, ...,x,) be a random sample from the distribution of X having p,d, f f(x,0)
6 € Q.A statistic T = T(x4, ..., X,) is defined to be sufficient statistic if and only if the conditional
distribution of (x4, ..., x,) given T=t does not depend on 6, for any value t.

[Note: In such a case if we know the value of the sufficient statistic T, then the sample values are
not needed to tell us anything more about 6].

Also the conditional distribution of any other statistic T (which is not for {2 tray) given T is
independent of 6.
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A necessary and sufficient condition for T to be sufficient for 8 is that the joint b.d, f of (x4, ..., x5)
should be of the form

f(xq, o, x5 0) = g(T,0)h(xq, ..., X))
Where the first term on r, h, s., depends on T and 6 and the second them is independent of 8. This is
known as Nyman'’s Factorisation Theorem which provides a simple method of judging whether a
statistic T is sufficient

Remark: Any one to one function of a sufficient statistic is also a sufficient statistic

Example: Consider n Bernoulli trials with probability of success P. The associated Bernoulli

random variables (x4, ..., x,) have common distribution given by

fl,p)=p*(1-p)'™,x=0,1

The joint probability function of (x4, ..., xy,) is

fxy, .., %, p) = pEEXi(1 — p)nEi i

=g (z Xi, 13) (X4, Xp)

Where gl x,p) = pEixi(1 — p)n=Ei X
And A(xq,...,x,) =1
Therefore}.! x; is sufficient for p, and, so isx = X' x; /n.

Example (x;, ..., x,) be arandom sample from a position distribution P(1)i.e

-19x

flx, M) = ¢ , x=0,1..

x!

The joint probability function of (xy, ..., X,) is

e—nllexi

[T} x;i

=9 (i XiJ) #(Xi, Xn)

i

f((xl, ey Xn), A) =

Where g(Qix;,A) = e MA)E xi
A(x;, x,) =

H?Xil'

Hence.

n n
in or in /n
i i

Are sufficient for A

Example: let (x;, ..., x,,)be a random sample from a Normal population N(u, o).

Case I: y unknown, ¢ known (=ad,)

1

F((eq, e x), 1) =

(O'o\/ZT[)ne_ Z?{xi_ﬂ}z/zag
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1

Elnx%+nﬁ—2nx,u]/20'(2)

(ooJ 2myn=e!
= g&X WA(Xy,..Xy)
= [2u® — 2n%, ]/ 20§
Where g& W) =e—XIx;/ 204
As

1

(aow/Zn)ne

/L(xi, . xn) =

Which show that X is sufficient for u .

Casell: u is know(= u,), ¢ unknown

1
F(Gers s X0), 0) = ———=5 =2 F1740)* /20

(0y4/2m)

= g’\i(xi —Hg)% 0

(X, %)

Where
- 1
n 2
g [Z(Xi — 1o)?, 0] = gy % (i7" 1268
i (0p+/21)
Which show that Y.7'(x; — p,)? is sufficient for o

Case III: Both p and o are unknown

1 My
f (X, X, 0) = ————5 —Z1imko)* /262

(0'0\/2_7'[)
1

_ _[Z’ilxiz—Z/AZ’ilxﬁZﬁ]zo.OZ

B (0'0\/2_77:)ne

Which shows that [X7 x;, 2.7 xZ] an jointly sufficient for [y, o] Similarly,[ &, X.(x;, x)? / n-1]are also
sufficient for [y, a],

Example let (x;, ..., x,,) be a random sample from a gamer distribution having p, d, f

1 —%xb_l,xze

(x,6,b) = e
/ 20
We have
1 n p-1
f i, %0, 0,b) = e —Lixi/0 (1_[ x;)
6™ (b)n L.
Case | 6 unknown but p is known

We can write
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So that };}* x; (or X) is sulfficient for 6.

Case II: 6 Known but b unknown

We can write

n

p-1
1
— i/0
F((xqy e x0),b) = W(HM) [eZx/6]
So that is sufficient for p
Case III : Both 6 and b are unknown it is seen that (3 x;, [I7* x;) are jointly sufficient for (6, b)
Example: let (x;, x,,,) be a random sample from the experiential distribution

1 x
f(x,0) =5e 6,x =0

It follows from above that ).} x; (orX) is sufficient for 6.
Example let (xy, ..., x,)be a random sample from the distribution with b, d, f
f(x,8) =0x"1,0<x<1

We have

f(Ger, ey %), 6) = 67 (Hxi)e_l =" (nxi)e] []’['}xi]

So that [}~ x; is sufficient for 6

Example let(xy, ..., x,,)be a a.r. s from the Laplace distribution having p, d, f
L)
f(xﬁ):Ee 0llo<x <o

We have

1 n e
f((xll ___’xn)’ 9) = Z—ne_Zizl[xl 0]

For no single statistics T it is possible to express the above in the form g[T,0]4(x;, x,,) . Hence
there exists no statistic T which taken alone is sufficient for 6. However the whole set (x;, ..., x,) or

the set of order statistics (x(y), ..., X(n))is jointly sufficient for 6

Example let (x;,..,x,) be a random sample from the Rectangular distribution R(0,8)
having b, d, f.

1
f(x,H) =5,—9 SXSQ
We have

1 n
f(xi;xn; 0) = B_nl_[ 1[9,9](X1)
i=1

Where I, (x is the indicator function for which
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I _{1 if x€A
ATl if xe A

But H?:l 1[9,9]()(1) = I[O,X(l)(X(l)I[x(!),o] (x(n))
Where X (1) and x(,,) are the minimum and maximum of sample values(x, ..., x,)
Therefore, we can write
£y ey x0),0) = g[Xmy, 0] ((xi, %)
!
Where g[x(n),e] = onlix 6] (X))
A(xi, Xn) = 110, x0] (%i)
Where shows that x,,) is sufficient for 6

Example: Ifxhasp,d, f
1
f(x,0) =5;—0 <x<#9

We can check that

1
f(xi,xn, 0) = 9_71I[_gx(n)]("("))’[X(l),O]X(n)

So that x4y is sufficient for 6

Example Let (xy,...,x,) be a random sample from the rectangular distribution R(6,8,) having

b.d,f

1 91Sxi392

f(xl 91192) = {ng

091 elsewhere

The b, d, f((xy, ..., x,)) is given by

n

1
f(Cey oy %), 61,6;) = @ — 0" 1_[ Iig, 0,10

i=1

1 if91SXiS92

Where I[Qiei](x") - {0 elsewhere

We can write

n

Z I[Qiel](x") =1 (x(i))l[x(l),ez](x(i))
' [eix(i)]

l
= glx(), X(n), 0162 A (xi, %)
Where
glxw, %y, 6162] = I[g, x| X)) ix0,0,1 (X))

And h((xl, ...,xn)) =1



Hence [x(l), . x(n)] are jointly sufficient for 6, 6,
Corollary : If 8; is known x is sufficient for 6,
If 6, is known x; is sufficient for 6,

Example: let ((xl, s xn)) be a,r,s from the rectangular distribution R (-6, ).

1
=— —0<x<
f(x,0) L 6<x<89

Then

n

1
f((xl, ...,xn), 9) = Wnl[_g’g](xi)

i=1
1
= oy 0% )i 0%
So that [x(l), s x(n)] are jointly sufficient for 8
Example: [x(l), s x(n)] are jointly sufficient for6 in R(8 — i, 0+ %) and R(8,60 +1)
Example: Let (x4, ..., x, )be a random from an exponential distribution

f(x) =2,-*9 9 <x <o

Casel: A Unknown 6 known (= 6,)

n

n
f((xlr :xn): A) = Ag_l Z(xi - 9) 1_[ I[g’m)(xl‘)
i

i=1
Which show that };*(x; — 6,) is sufficient for Aor x is sufficient for A

Case II: A know (= 4,), 8 Unknown

n n
F (Gt 0, 0) = A0 Y (it = 0) [ [ g
i i=1

n

4

1_[ i (0, %) (xy)

_ {,ane —26 30 x;
= {e n I[glw)(x(i))}{xoen x I[x,(i)oo)(x(i)) }

Which shows that x;) is sufficient for 6

Case III: Both 4, 8 unknown

It is easy to check that [}; x, x(i)] are jointly sufficient for [A, 0]

METHHODS OF ESTIMATION:
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For important methods of obtaining estimators are (I) methods of moments,(II) methods of

maximum likelihood (III)method of minimum X2 and (IV) method of least squares.

(DMethod of moments

Suppose the distribution of a random variable X has K parameters (64, 65, ... .... 8;) which have to
be estimated. let 4, = E(x") denote the rt" moment of about 0. in general i, is a known
function of 84, ..., 8y so that = u,.(64, ... 0 )Let (x4, ... x,) be arandom sample from the distribution

of Xand let m, = X" x! /n be the r**. Sample moment from the equation

m,=u,.(0,,..60,),r=1,...k

Whose solution is say ; ... 0, where 8; is the estimate of 8;(i = 1,..k) Those are the method of
moments estimators of the parameters.

Example let x =N(u, o)
pe=n
Wo=0%+pu

The equation

X=U
2
Xi o2 +Ii2
n
Have the solution
Let
n=x

oo JZ?xE _ z2e \/zmxi—ﬁz
n n

Example let x ~P (A) and let (x4, .., x;;) be random sample from P(A).

py=2
The equation
X=2A
Provides the estimator
A=Xx

Example let (x4,..,x,) be arandom sample from the exponential distribution

f(x,0) =0e %,x >0
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The moment equation

_ 1
*=%
Provides the estimator
.~ 1
0 =—
x

Remark: (I) the method of moments estimators are not uniquely defined. We may equate the

central moments instead of the raw moments and obtain solutions.

(II) These estimator are not, in general, consistent and efficient but will be so only if the parent

distributions is of particular form.

(IIT) When population moments do not exist (e. g. Cauchy population) this method of estimation is

inapplicable.

METHOD OF MAXIMUM LIKELIHOOD

Considerf (x4, .., x,, 0), the joint b, d, f of sample (x4,..,x,) of observations of a, 7, s. X having the

b,d, f f(x,0) whose parameters @ is to be estimated. When the values (x4, .., x,) are

given, f(xy,.., %y, ..0) may be looked upon as a function of 8 which is called the likelihood function
of 8 and is denoted by L(6) = L(6, x4,..,x,) it gives the likelihood that the r, v. (x4, .., x,)assumes

the value (x4, .., x,) when @ is the parameter.

We want to know from which distribution (i. e. for what value of 8) is the likelihood largest for this
set of observations. In other words we want to find the value of 8, denoted by 6 which
maximizes L(X,..,%p, ). The value & maximizes the likelihood function is in general, a function of

Xq1,..,Xp SAy

0= é(xl,..,xn)

Such that L(@) =max L(6,,x,..,x,) Q€

Then 8 is called the maximum likelihood estimator or MLE.

In many cases it would be more convenient to deal with log L(6), rather then L(8), since log L(6)

is maximized for the some value of 8 as L(6). For obtaining m. £. e we find the value of 8 for which
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We must however, check that this provides the absolute maximum. It the derivate dose not exists at

6 = @ or equation (1) is not solvable this method of solving (1) will fail.
Example: Let (x4,..,x,) be a,r, s from the Bernoulli distribution.

f(x,0) =6*(1-0)%x=6,1
Then the likelihood L(6,xy,..,%,) = OECXi(j — @) 24 Xi
And log L(6) = X7 x;)log 6 +(n — X7 x;) log (1- 6)

Differentiating and equating to zero, we have

0
5008 @) =0

g _ n-Yx;

Le e i-0 =0
Itxi—no

or oo

Or e =xix;/n=x

m.f.eof 0isO =«

Example: Let (x;,..,x,) be a,r, s from the Poisson’s distribution

e—/l x
flx, ) = X =012
e—nxlzzlxi
Then LA, xq,..,%,) = W
And log L(1) = nx + X} x;)log A — X' logx;!
9 — _ Z?xi
Or ﬁlogL(A) =-n+==

Equating to zerowe get A = x
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X

m.f.eof Ais

Example: Let x4, .., x,,) be a, 7, s from the truncated Binomial distribution having b, d, f

A
f(x,0) = (x)m,x =i,12(0<6<1
2 92Xi(1_9)2n—29€i
— n
Then L(0, %, %,) = IT! (xi)—[i_(i_g)zn]

AndlogL(6) = X' log (i) + X x)log 8 + (2n — 2x;)log(1 — 8) —nlog[1 — (1 — 8)?]

X +Z?xi -2n  2n(1-6)

a1 L(8) = +
8=y 1-0 ' 1-(1-6)?

00

Equating to zero we get

Y ula-o{1- -0+ x - 26— 1 - )]

—2n8(1-0)2] =6

Or Yxi[1—(1—-6)%]=2n6
Or Yx;[0(2—6)] =2n6
Or 2-9=2

or g=2-2

m.i?.eis@zZ—E
T

Example: Let (x4,..,x,) be a,r, s from the normal distribution N (g, o)

Case I: ¢ unknown but o = gy(known)

1 _EPCimu0)? 52

Th L ) rt = —n
en (%1, -+, %) =k

And logL(k) = —nlog(oey/Zm) — EP(xi — W)2/20%

29
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Or 56108 L(W) ===

Equating to zerowe get u = x
mL.eOfi=1x
Case II: p = py(known)but o unknown

1 e_z?(xi—ue)z 262

Th L(o,xq,.., =
en (0,%1,.., %) Nk
n _SM(xi-u6)?
And log L(0) = —nlogo — —log(2m) — >
2 20
2 _n | SMxipb)?
Or o5 logl(o) = ——+=———

n i—uo 2

Equating to zero we get o= /_Zl ("n“ )
~ n i—uo 2

m.f.e Of o is 6= le(xn#)

Case III: Both u and o are unknown

Then L0, %1, .., %) = ﬁ X[ @imk0)? 52
And logL(u,0) = — g logo — glog(zn) — E(’;lT_Z“)Z
Differentiating partially w.r.t u, o we get

ai#logL(u, o) = W
And 2 logL(u,0) = 2 +ZECR"

N(y.— )2
Equating to zero both the derivatives and solving the equations we get u = X and o = /Z‘(x%

Ny . )2
m.f.earefl =xand é = /Zl(x%

30



Example: Let (x4,.

Then

And

.,X,) be a,r, s from the exponential distribution

X

1
f(x,0) =§e O,x >0

L(O,xq,..,%,) = ée—z’i‘xi/e

log L(6) = —nlogl — X x;/0

0 n  Xrx;
ﬁlogL(B)——5+ P

Quoting to zero, we get @ = ¥ so that the m.£.e of fis 0 = x

Example: Let (x4, .., x,) be a, r, s from the exponential distribution

Then

f(x,0) =e 9 x>0

L(O,x;, ...x,) = e "x=0)

31

If we differentiate logL(0) w,r,t 6 and equate to zero we get n = 6 which does not yield any result.

Now L(0) is maximized by choosing the maximum value of 6 subject to the condition

0 <x(1) Sx2) <), S X

Which shows that 6 = x(;) so that the m.£.e of ¥ = X;

Example: X has p.d. f

m. L. eé = X(l‘)

Example: Let(x;,.

Then

f(x,0) =6x971,

f(x; Al 9) = Ae_a(x_e),x > 0

.,Xn) be a,r,s from the distribution

L8, xy,.., %) = ([P x)" "

0<x<1(6>1)



And log L(8) =nlog 6 + (6 — 1) 2.7 logx;

9 _n n .
Or 5 logL(0) = 5 + Yt logx;

) n
Equating to zero we get § = Y logx;

n

m.f.eof 0 = ST logw:

Example: Let(xy, .., x,) have rectangular distribution R (0,8) havingp, d, f

Then L(Bl xll' 'lxn) = L

Which is maximized when 6 is maximum subject to the condition
O0<xq < <xn=<0
The minimum value of 8 is x(,) so that

m.L.e of @ is0 = X(i)

Example: Let(x4,..,x,) be a,r,s of the regular distribution R(—#6, 8) having b, d, f

(9)—1 0<X<0
[ 0) =55, 0<X <

Then L(6,xq,..,%p) —0<xq) < <x) <0

- 2ngn’

When is maximized when 6 is minimum subject to the condition —0 < x(;) < --- S x(p) < 6
So that since —6 < x(q) or 6 > —x(q)
m.L.eof 0is O = —X(i)

Example: Let(x4,...x,) be a,r,s from the regular distribution R(8,, 8,) having b, d, f

32
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1
f(xlellBZ) =—791 <x< 92
2

Then L(6q,0,,xix,) = ———

In maximized when (8, — 6;) is minimum i, ef; is maximum and 6, is minimum subject to the

condition
01 £ X(i) Z2<Z X(n) £ 0,
We have to take 6, = x(,) and 6; = x(;) so thatm.£.e of 6 and 6, are B; = x(;y andf, = x()

Example: Let(xq,...x,) be a,r,s from the regular distribution R(8 — ¢, 8 + ¢) havingp, d, f

1

f(x,6) =m.9

—cgxZ0+c

1

Then L(6, x;, x,,) = o’ 0,

¢ € x() &K Xy € 0+ cis maxi zed for any fsuch that
0 —c K xgy <---<x(n) Z0+c

lef—cgxpordZxpycand O +c>xp —¢

And 0 + C2X(n) IS 02X — C

+X(n)

i
This shows that any statistics which lies in between x,) — c and x(;) + ¢, e. g (l)Tis a,m.l.e the

m. l. e is not unique in this case

Example 12 It x has R(0, 6 + I),any statistics which lies between x,) — 1 and x(;) isam.l.e if 6

Example 13 Let(x;,...x,) be a,r, s from the regular distribution R(8, 26) having b, d, f
1
f(x,0) = 59 £xK20

Then L(G,xi,..xn) =0in,0 <X(i) <<X(n) <29
Is maxi zed when 6 is minimum subject to the condition 8 K Xy € K Xy K 20
i.e 0 K X(l) ...... (l)
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Since el L—=2
X(i 0
®
. X
lL.e — X(i)

The minimum value of 8 satisfying (i), (ii) is % so that the m.l.eof 6 is

Example: Let(x;, .. x,) be a,r, s from the regular distribution R(—8, 8) having b, d, f
(x,0) = ! 0<xK6
f xl - 20 ’ x X x

Then

1

L(6,x;,..x,) = (ZT)”'

0 < x) K. Kxemy KO
This is maximized when 8 is minimum subject to the condition
Xm) € 0r0 > X(p
And -0 < xpord > —x;)
This happens when 6 = max(—x(;), X(n))

m,l,e of @ = max(—X (1), X(n))

Example: Let(x4,...x,) be a, 7, s from the Laplace distribution with p, d, f
1 -6
f(x,@)zze‘[x l—0<x <o

Then
L(0,x;,x,) = %e‘zﬂx‘e]

And logL(8) = —nlog2 — XM x; — 6]

34
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Which is maximized when 8 is the sample median.
m,l,e of @is @ = Xme
Example: Let(xy,...x,) be nindependent r, v, s such that x, has normal distribution N(r8,r30?)

We have to estimate eand then

n
I _; — 9)2
L(Bpxllxn) = 1—[[—6 2r3a.2(x7‘ "
342
roi \V2mrio

( 1 ) I L ynGrT6)?
= | — —202 r1 T3
2na/ (n;)2¢

[ 0 2
And log L(8) = nlog (ﬁ) —zlognl — Z%ﬂz“r—g’
1
20 r2

a (xr—70)
or 55 logL(®) = =30 =

Equating to zero, we get

n
z [(xr —Zre)] _g
T
i
_ Z?xr/rz
OI‘ - E?i/rz
m.l.e Of G is
5 Lix/r?
xrifr?
We have E(8)=06,v(d) = U

Optimum properties of MLE: (i) If § is m. L. e of 8 and ¥ () is a simple valued function of 8 with

unique inverse, then ¥(0) is the m. l.e of ¥ ().

(i) If a sufficient statistics exists for 8 m. L. e 8 is a function of this sufficient statistics.

(iii) Suppose f(x, ) statistics certain regularity conditions and 8,, = 8,,(x,...x,) is the m.l.e of a

random sample of size n from f(x, 8)

Then- (a) {én} is consistent sequence of estimators of 8
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(b) 6, is asymptotically normally distributed with mean @ variance

1

nE[%logf(x,@)]2

(c)The sequence of estimators 6, has the smallest asymptotic variance among all consistent,

asymptotically normally distributed estimate of 6, i. e 8,, is BAN or CANE or most efficient.

(iii) METHOD OF MINIMUM X2: LetXbe a.r.v withp.d. f f(x,8) where parameter to be
estimated 6 = (04, .....0,) Suppose S, S,...Sx are # mutually exclusive classes which from a

partition of the range of X. Let the profanity at X falls in S; be

b, () = f f(x,0)dx,j=12,..%
Sj

Where Zf;lb, (0)=1

Suppose ,in practice ,corresponding to a random sample of n observations from the distribution of

X we are given the frequencies (Ny, ....., Ny) where Ny=observed number of sample observations

falling in the class S;(j = 1,2 ..... &) such that Zf‘ N; = n then the expected number of observation

in §; is np;(6), Define

*
X2 = ) [, — nb O /nb,(6)
j=1

J

Where n; is the observed value of N;(j = 1,2 .... %) Evidently x* will be a function of 6 (or 6;,..6,)to
obtain the estimator of Owe minimise x2w.r, t . The minimise x? estimator of @ is that & which

minimise above x2.

The equation (s) for determining the estimator(s) by this me that are

x2 ox2
90 06

Remarks:
(i)Often it is difficult to obtain & which minimum X2, hence X2 is changed to modified

2

X2 =) [n,—nh, @)1 n

j=1
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(Ifn; = 0, unity is used). The modified minimum x2 estimator of 6 is 6 which minimises the

modified x2

(ii) For large n, the minimum x2 and likelihood equations are identical and, consequently, provide

identical minimum y2maximum likelihood estimators.
(iii) The minimum X2 estimators are consistent asymptotically normal and efficient .
Example: Let(x,..x,) be a, 7, s from a Bernoulli distribution having p.d. f

f(x,0) =60*(1-6)1"*,x=0,1

Take N; =the number of observations equal to j for 7= 0,1 Here the range of X is pinioned into the
two sets consisting of the minimises 8,and i respectively then

bo(8) =P(x=0)=1 —9}
b1(9)P(x =1 =6

And

i

o [y - b0
X = Z nb,(0)
j=o0

_[ne—n(1-0)]* [0 —nol?
~ n(1-6) né

_n-m—n@-0)]*  [n—nel?
n(l-29) * no

C[ni—ngl* 1
n 6(1-96)

By inspection x2 = @ for 8 = n;/n Therefore 8 = n;/n. This is a same as what would be obtained

by the method of moments or method of maximum likelihood

(IV) METHOD OF LEAST SQUARES Suppose y is e random variable whose value depends

on the value of a (non-random) variablex. For example the weight of a baby (Y) depends on its
age(x) , the temperature (Y) of a place at a given time depends on its altitude (x), or the salary (Y)
of an individual at a given age depends on the number of years (x) of formal education which he has

had the maintenance cost (y) per year of an automobile depends on its age (x) etc.
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We assume that the distribution of the . v Y is such that for a given x, E(Y/x) is a linear function of
x while the variance and higher moments of y are independent of x. It means that we assume the

liner model
E(Y/x)=a + Bx
Where d and 8 and two parameters .We also write
Y=a+fx+e
Where € is a,7,u such that E (¢) = 6,V(0) = o2

The problem is to estimate the parameters 4 and £ on the basic of a random sample of n

observations(y, x;), (Y2, X2), ... ... , (Yo Xn)

The method of least squares estimations of a and £ specifies that we should take as our estimates of

d and § those values that minimise

n
Z[%i — 0= Xi]2
i=1

Where y; is the observed value of y; and x; are the associated values of x. This we minimise the sum

of squares of the residuals when applying the method of least squares.

The least squares estimators of a and 8

5 _ aieq(gi—8)(x;—%)
Are ﬁ - Z?:l(xi_f)z
And a=14g-— px
Remarks:

The least square estimator do not have any optimum properties ever asymptotically However in
linear estimation this method provides good estimation in small simples. These estimators are

minimum variance unbiased estimators among the class of linear function of Y's.
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TESTING OF HYPOTHESIS

(NEYMAN PEARSON THEORY)

Let x be a,r,u with p.d.f f(x,0) where 68 (may be a vector (6y,.......60;) is an unknown
parameter. A random sample of n observation denoted by E = (x; ... ... Xy ) which takes values in
general, in the n-dimensional real space R,, the parameter space (all possible values of the

parameter is denoted by (, say . For any subset AC R,, we can calculate.

po(E E A) = fA [ﬁ f(x,@)] dx, ..dy,

Which will depend on 6.
Definition: A statistical hypothesis is a statement about the parameter fin the form H: 8 € w(< Q)

For example consider

OTH:9>90 OT‘H:9¢90H:91 < 9<92

Definition If a hypotheses specifics an exact value of the parameterd, it is called a simple hypothesis

e,g.H:0 =6,inthis casewin H : 8 € wis aset of asingle point

If a hypothesis does not fully specify the value of 8( but gives a set of possible values only) it is

called a composite hypothesis e,g H: 8 # 6, or H:6 > 8, etc. In this case w in H: 0 € w is set of

more than one point.

Definition the hypothesis which is being actually tested is called the null hypothesis and other

hypothesis which is stated as the alternative to the null hypothesis is called alternative hypothesis.
For example, null hypothesis may be H,: 8 = 6, and the alternative may be H;: 6 # 6,or H;: 0 >

fyor H;: 0 < 6, etc.

Both null and alternative hypothesis may be simple or composite .For our study, we shall usually

take null hypothesis to be simple .

Suppose we want to test a null hypothesis H, against an alternative hypothesis H;on the basis of a

random sample E = (X,..X},,) in the sense that we have to decide when to reject or accept Hy
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Definition A Statistical test of a (null) hypothesis H, against an alternative hypothesis H, is a rule
or procedure for deciding when to reject or accept Hy on the basis of the sample E = (X;,..X},,) .It
specifies a position of the sample space R,, into two disjoint subsets W and W = R,, — W such that
we reject Hy, when E € Wand accept H, when E € W [We note that the rejection of H, amounts to

acceptance of H; and vice-versa]

Definition The set W, corresponding to a test T, which is that we reject Hy, when E € W is called the
critical region of the test while W is called its acceptance region. For different test the critical

regions are different.

Two types of errors: In a testing problem we are liable to commit two types of error. Suppose Hyis

true and get E € W so that we reject H, this is called the Type I error which occasion when we
reject the null hypothesis when it is actually true. On the other hand, suppose H, is false and H;is

true and yet x € w so that we accept H, this is called the types Il errors which occurs when we

accept the null hypothesis when it is actually false. We denote by a and f the probability of type I

error and type Il error, respectively, i, e

a = P{H,/H,is true}

=P{EeW/ 0 €H,}

And B = P{AccepH,/H, is fabe

= P{EEW/ 6 eH,}

Definition The probability of type I error for a test T, denoted by o is called the “size” or level of

significance of the test T.

Remark If H, is simple (say H,:0=6,) is clearly defined ,when H, is composite (say H,: 8 € W)we

take

a = supPr{E eW/: 0} 6eH,

Definition For a test T having the co region w, the power function P () is defind by

P-(8) = P{RejectH,/ 6}

= Pp{Ee W}
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As a function of 8

Evidently,
Pr(0) =a for6 e€H,

P (0)=1-B6 €H

If we would find a test of the given hypothesis for which both «and fare minimum it would be the
best. Unfortunately, it is not possible to minimise both error simultaneously for a fixed sample size

test. Consists two tests T and T, defined as follows

T, always rejects Ho i, e its critical region W1 =R,,, while T, always accepts H, i, e its cur region
W, = @ then for T:,x= 0 and f = 1 this shows that if the probability of type I error becomes
minimum than the probability of type Il error becomes maximum and vice-versa what is done is to
fix o, taking « to be quite small (in practical «=.05 or .01)so that all test of size x are only
considered. Among all test of a given sizex comparison made on the basic of their power function. If
T and T are two tests (for the same testing problem) of same size «, T is said to be better than T if
its power is greater than the power of T for alteration hypothesis (equivalently the probability of

type Il error for T is less then the probability of type II for T,)

Simple hypothesis against a simple alternation: Consider the testing problem

H0:9 = 90

Hl: 0= 91(7& 90)

Definition A test T* is called a most powerful test (MP) of size < (0 <x< 1) if only if the probability
of type I error is equal to « and its power Pr(8) is not less than the power Pr(0) of all other test T

of sizexx, i, e

(D)Pr.(6,) =

(i))Pr.(6;) = Pr(6;)

For any other test T of size «

[This means that the probability of type Il error for T is less that of IV any other test]

Simple hypothesis against a composite alteration: Consider the testing problem
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H;:0 + 0y(orf > 6,016 < 6,)

Definition: A test T is called a uniformly most powerful test (VMP) of size «( 0 <x< 1)if its

probability type I error is equal to « and its power function is such that
Pr,(0) > Pr(6)for all BeH,and all other test T of size «
Example Let x be a, r, u having exponential distribution

f(x,0) =0e (x> 0)

And we want to test

Against Ho:6 = 2}

H1:9=1

Let the sample consist of only one observation X and consider two tests T and T with associated

regions W = {X > I} and W = {X < 0.7} respectively

The probabilities of two error for T are

o)

«=P{X>1/0 =2} = 2f e~2*dx = 0.135
1

1
B=P{X>1/8=1}= f e *dx = 0.635
0

The probabilities of two error for T are

7
o= P{X > 0.7/0 = 2} = zf e~ 2%dx = 0.135
0

[ee)

B=P{X>07/=1}= f e~ 2*dx = 0.932
7

Obviously T is better than T'.

Example A Two -faced coin is tossed six times for which the probability of getting head in a toss is 6

and the probability of getting a tail is (1—8) . it is required to test the hypothesis.

HO:H :00 = 1/2
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Against Hi:606=06,= 2/3

If the test consists in rejecting H, when head appeases nurse then tours times and accepting H,

otherwise find d, 8 soln
o= P{=0,} ="/
B =1-P{RejHy/8 =6} =12/
Example Let x have an exponential distribution
f(x,0) = %e%,x >0

It is required to test Hp:0 =1
Hi:0 =4
Find « and g for the test having region C = {X > 3}on the basic of a sample observation
Soln : We have o= P{RejH,/0=0,}
=P{X>3/0=1}
= fooe_xdx = 3¢
3
B = P{sce.H,/6 = 6,
=1-P{X >3/6=4}

=1—if3°° e */*dx

Power =1-f=e3/*

Example Let x have the rectangular distribution
1
f(x,0) = 5,0 2x20

It is required to test the hypothesis
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Hy:0 =1
Against Hi:0=2

Suppose one observation is taken and the tests having the critical regions (a) C; = {x > .7} and

(b) C, = {.8 € x € 1.3} obtain the profanities of two types error « and 3
Soln : (a) C,={x>.7}

P[X > .7/6=1]

(b) C, ={.8<x<13}

«=P{.8 < x < 1.3/6 = 1}

1
=f 1l.dx =2

.8

1-B=P{8<x<13/60=2}

Or B =.75
Example Let x have a Binomial distribution B(10, b) for which

fl,b) = (1360) b*(1-p)***,x=0,1,...10

One observation x is taken for testing Hy : p = 1/2 against Hy:p = 1/4. Find o and B for the test

which rejects Hy when x<3.
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Soln «= P{x < 3/p=1/,}

X 10—x

- 6)

X

11
64

B =1-P{x<3p=1/,}
10—x

(6 G

0

1-—

3
xX=

8

= 1_31'E

Example Let x have a Poison distribution P(1) and it is required to test the hypothesis Hy: A = 1vs

H;: 2 = 2. One observation is taken and a test is considered which reject H, when X>3 . Find «, 8

Soln: we have «=PX =>3/1=1}
2 et
=1- Zx:o?
_q [1 N 1 17 5
B e e 2.0 Ze

Now we are in a positions to power a the over which helps us to obtain MP tests of a sample

hypothesis against a simple alternative. In some special situations, this also gives a UMP test when

the alternation is composite.

Let us suppose that we are testing a simple hypothesis against a simple alternative



Us Hi:0 =6,(+6,)

Theorem (Neyman- Pearson Lemma)

let the like hood of the sample E=(Xy, ..., X;,) under H, and H;be

L(6,) = L(8;, X1, .., Xn)

n
=] [rexueni=oa
L=1

Let T be a test of sizec,for which the cr. region W is defined by

L(6)
L(6o)

W={E/ >e}

Where e is a constant determined by the size condition
P{E eW /6y}=x
Then T is a MP of size «for testing H, against H;

Prof Let us write

LO = L(Bo)and Li = L(BL)

So that the size and power of any test T with Cr. Regain W are follows:

Size of T = [, Lo dx and power of T = [ L;dx

Where dx=dy dy, ... .. d,

46

Consider the test T (having cr. Region w) and other test T (having is Region since both W are of

size « we have w)

f Lodx =o<=fLodx—(1)

w
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w W1l W2 W3

W,=W-Wnw
Let W2=WﬂW
Wy=W—W

We have using (i),

fLde=f Lodx—f L,dx
w w 1%

1 2

:f Lodx_f Lodx=f Lodx — (i0)

w Wy W3

SineW; c W*and W3 ¢ W™ we have, by definition of w" and using (i)

f Lidx > cf l,dx — (ii)

Wi Wi

And fw3 Lidx < cfw3 Lodx = ch1 L,dx — (iii)

Therefore ,from (ii) $(iii) we get

f Lidx>f l;dx — (iv)
w w

1 3

Adding sz L;dx on both sides of (iv) we get

f Lidx > f Lodx
wiUw,y w3z Uw,

Or J,,Lidx [ Lodx

Or P.(RejH,/0=6;)

Or P.(6;) > F-(6;)

Which shows that T is more powerful then T any other test of size o< Hence T is the MP test

Remarks (1) The constant C for the MP test is determined by using the size condition

f L,dx =x

w

Usually, a unique value of C is obtained when the r. v has a continuous distribution.
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(2) When X is a discrete r. v. the constant C may not be unique. What is more important is that we
may not be able to find a MP critical region with expect size . To get rid of the difficultly the cr.
Region is defined by the following

( . . L(6,)
Rej H, if L(0,) >c

L@ _
L(6)

{ Rej Howith probablity r if

L(61)
L(8>)

>c

Acc Hy if

. . L(61) L6y _ ) _
Then the size of test is P, {L(Go) > c} + P, {L(Go) = c} =x

To any given &, r can be determined. Such a test is called the a randomized test
Example Let (x4,..x5) be a random sample from Ho Bernoulli .distribution

f(x,0) =60"(1-0)1"*x=010<6<1)
Letustest Hy 8 = 6 us H;: 8 = 6,(> .6). The MP test has cr. Region {Z?xi > c}
Now Z? x; has Bernoulli. distribution B(5,8)

From the tables of Bernoulli Distribution we can to tabulate P,{}3 x; > ¢/ 6 = .6} us follows

C P(X3x; >¢) | Po

1 0.01024 1.00000
2 0.23040 0.98976
3 0.34560 0.68256
4 0.25420 0.33696
5 0.07776 0.07776

As such, no non-randomized MP test of exact sizex .05 or 01 exists. However, the randomized MP

test of size .35 is given by
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5
Raj Hoifoi > 3
1=i
5
Raj H, with probabilit '01304'2 =3
aj o With probability .345601f1.xi_
=i

5
Ace Hy, ifz x; =3
1=i

(3) Suppose we test the simple hypothesis H,: 8 > 6,against a composite alternation H;: 8 # 6, or

H;:0 > 6, or H;: 0 < @, if the MP test for Hyp: 8 = 6, a gains H;: 0 = 8;given by the NP lemma dose

not depend on 6;,the same test with be MP for all alternative values of 8 and, therefore it will be

a.UMP test.

Example (1) Let x have a

We want to test

Against

We have

Poisson distribution P(4)having p. m . f

e—l x
f(xll) = xi , X =0, 1,2
Hi A= AO
Hi = Al

L(o) = ﬁ flx, 1) = e—nﬂzi?xi/ﬁxi

Therefore, the MP test has the cr region W given by

Or

Or

Where

L(11)
L(2o) >C

{

}, i,e. inside W we have

L) o _niay-a0)
L(2o)

-n(h = A) + (Ex)log () > €

1xi >k

_ c+n(d1—2p)
log(41/20)
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We know that ).} x; has Poisson distribution P(nl) so that k can be determined by solving

P x; > A [A=2,) =

Remarks: (i) When 4; < A, the MP test will be given by {3.I' x; € £}

(ii) Sine the cr region does not depend on the value of 1, there are UMP for the alternative H;: 1 >

Ao as H;: A < Ay, respectively.

(iii)For getting a MP test for an exact size < we may have to use randomized test

(2) Let X have an exponential distribution

f(x,0) = 0e™% (x > 0)

We want to test H,: 6 =6,
Us H;: 0 = 6,(< 6,)

— Ney.— )2
We have L) = H?f(X,O) _ 9: 0 X (xi—u)

Therefore, the MP test has the critical region W defined by

W= {{ > <)

1
L(u) _ e 20% F(xi—u)?

i,e Inside W o) e_ﬁx?(xi—uo)z =cC

1
Or e 2o [N7 (0 —pu)? — X (a — o)l > ¢
Or (X7 0o — 1o)? — X7 — w)?] > 20% logc
Or 2(u; — po) X x; > 20%loge + (U — pd)n
o x5 s e e
Or x>k

Whose £ =71,h,s

: MP test is given by W={X > £} Since x > N(y, G/\/ﬁ) we can determine
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GRAPH HERE

P[Z > fy] =x

4 Is called the upper « % point of N (0,1)

4« Is called the lower « % point of N (0,1)

4 by solving

Po (% > £} =
o o 2225 2]
Or Ty, {Z > IZ_‘:’} =

Under H,,z has N (o,1)and the tables of standard normal distribution provider the value of

#isuch that £, = IZ_—\;%O or £ + 1o + £ ‘%

Remark (1) the power of the MP test given above is

P,ui{JE > /?/}

_{f—ﬂi>/&—#i}
“Uovn = ovn

Z>—+&/o(
g

P { Vn(uo — 1) }

Since (u, — u;) < o ,it shows that the power is an impressing function of n

(i) If ui < p, the MP test can be shown to have the critical region {x > £} where £ = u, + £« \%

such that P{Z € £} = for a standard normal r, v(in pact £o = —#)

(iii) We observe that the MP test of H,: i = u, us H;: i = p; (> 1) has a cr region which dose not
depend on y;the same test will be UMP for testing H,: u = u, against H;: u > p, Similarly the MP

test H,: u = u, against H;: u = pu; (> p,) is UMP for testing H,: 4 = p, againstH;: u < u,
However it can be shown that there is no test which is UMP forH,: u = u, againstH;: u # y,

(4) Let X have a normal distribution N(u, o) where pis a known constant



We want to test

Us H;:0=0,>0d,)
We have
1 _Lzﬂ(x._ 2
— 2 i—1)
L(O') = (27‘[)”/20'71 20241

Therefore the MP test has the cr region w depend by W = {M > c}

L(oo) =

i,e inside W

. n
LoD _ () e_z;«xi-mz( L1 ) >c

L(oo) ~ \o; 27 2g?
1 1 AT
or Eie = (= 57) > loge ()
Or Y(x; — u)? > #(since o, > 0,)

2{log e+nlog(:—i)]

(L_L)
3 o

Where

MP test cr region is given by W= x; —u? >4}

. xi—u)? . .
Since Z?(’U—f) ~x2 we can determine £by solving

Py, {Z(xi —w? > /6} =

(xi-w)? A _
Or P, (RO 5 a_g} —
*
Or Pao {y > a_g} =
Where Y ~x2

From the table of xZ we can find %such that P{y > %} =« so that £ = 0 f«

Remark (i) the power if the test is given by

52
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s, {i(xi -w?> f”&}

— Pa'1 {Z(xl—_ﬂ)z > é}

2 2
g g

Where Y ~x2
(ii)If 0; < ggthe MP test can be shown to have the cr region {37 (x; — u)? < £}

(iii)Since the MP test of Hy: 0 = g,us H;: 0 = 0,(> 0,) dose not depend on og;it is UMP for testing
Hy: 0 = 0, against H;: o > g, Similarity the MP test for Hy: 0 = 0, against H;: 0 > g,(> g,)is UMP

test for Hy: ¢ = 0, againstH;: 0 < g,

However, no UMP test exists for alternative H;:0 # o,

(5) Let X have the distribution with p, d, f
f(x,0)=6x°"1(0<x<1)

We want to test

Hy: 6 =20,
Against H;: 0 =0,(>6p)
We have 1(0) = 6™[[1 ;]2
L(6))

Therefore, the MP has the cr region W:{ﬁ > C} i,einside W
0

9 n
@) [
B i=1

Or[T, x; > #where £ = [c (Z—”i) ”] 176, — 6y)

The MP test has cr region



54

Or (-2, logx; < #,} where £, = —log £

If can be shown that y = (20)(X%; logx;) has xZ, therefore the constant £,(and have £) can. Be

determined by solving

P{y € (20p)#0} =x

Where y~x%,

Remark In the same manner for H, : 8 = 6, against H;: 8 = 6,(< 6,) MP test can be found.

65>

Or \E% >a
Since L.H.S is non decreasing for |x| the cr region is {|x| > %}
Where £ is dreaming from the size condition

Py, {|x| > £} =x
Since X~N (0,1) Under Hy, % = Z /2

(7) Suppose X has the following distribution under H, and H; will here the critical region

{X:\/gelex/Z >C}
10

) is a non-decreasing function of | x|, the critical region is { |x| >k} where k= Zay,

Since Fo)

(8) Suppose x has the following distribution
Ho: fo(x) = \/%ex /2 ; -00< x<+00

2 _y4
Hi: fi(x) =1e X"+ _00< Xx<+00
4

Let us take a single observation. The MP test of Ho Vs H1 has the critical region

)
{x fo(x)

>C}

2
Or e **"**/2 >¢’

Since L.H.S. is a non-increasing function of |x|, the critical region is {|x| <k} where k= Z(1_a)/
2

(9) Suppose X has the following distribution

4x;0<x<1/2
Ho: fo(x) ‘{4(1 —x);1/2<x<1



Hi: fi(x) =1; 0<x<1
Let us take a single observation. The MP test of Ho VS Hihas the critical region given by

f1(x)
fo(x) =C

1
f100 E,O<X<1/2
1

fo(x) .
s /2sx<1

Where

f1(x)
fo(x) =C

We see that
If either x <k; or x>k,
Hence MP or region is
{ x <k }JU{x>k,}
The size of the test is Py { x <ki}U{ x>k} + Pyo{x>ka} = «
For simplicity we can take k, = 1-k;
(10) Let X have the rectangular distribution R(0,0) having p.d.f.
f(x,0) ==; 0<x<6
We want to test
Ho: ©=60Vs

Hq.i:6 = 91[>90)

We have
1
L(8) = o loxen(Xa)loer (Xm)
. : L(60)
Therefore the MP test has the critical region W ={m >C}
Now,

L(60) _ (Q) n lo,011x @)

L1 \e1) e xm)
00
_ (E)”foro SX(n) SQO

0 for Oy < x(n) < 60,

L(60)

This shows that 6D

is an increasing function of X(n) and, therefore

L(60)
L(61)

>C X(n) >k

Hence the MP test has the critical region
{X(n) Zk}
The value of k is determined by the size condition

P{x@) =2k/6} =«

n-1
Since x(py has p.d.f. fx,y (Y)= nyT ; 0<y<©6

n (6

We have ok

y"ldy =«

Remark: the above test is UMP for Hy: =6, against H1:0>0¢
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As we have remarked, UMP test may not always exist. Therefore we for their restrict the class of
tests by considering unbiased tests (defined below) and then try to obtain UMP test in the class of
unbiased tests. If such a test exists we call it uniformly not powerful unbiased test (UMPU test)

Definition Suppose we are testing a sample hypothesis He: 8 = 6, against a conqurite alternative
H;(may be 8 # 6yor 8 > 6, 0r 8 < 6,) AtestT is called unbiased if

P,(T) > for all 6 €H;

Where « is the size of T i, e. P,(T) =«

Remark: Suppose 8 = 6, is one of the alternative value of 6. If the test is not unbiased it may
happen that P, (T) <x= P, (T) which means that the probability of rejecting H, when it is false is

less then the probability if rejecting H, when it istrue if the test is unbiased it will not happen.
Theorem A MP test or UMP test is unbiased.

Prof Let T be a MP (or UMP) test of size . Consider another test T which rejects the null hypothesis
HO: 6 = 6, with probability « irrespective of the sample outcome. We may just toss a coin for
which the probability of is « and decide to reject the null hypothesis He if we get o, irrespective if
the sample values obtained. Then

Pr{RejectH,/Ho is true} =«
So that the size of the test T=x. Also the power of test T is also, since
Pr{RejectH,/Ho is false } =
But T being MP (or UMP) is such that
Pr (8) > Pr(0) for 6 € H;
Or Py (68) > for 8 # 6,

Remark: It may be shown that the following tests are UMPU for two sided alternative H; : 8 # 6, in
example 1,2 and 3

For example 1, UMPU test is {xX > £,0rx € £}

For example 2, UMPU test is{[x] > %}

For example 3, UMPU test is{>.(x; — u)? > %, or X (x; — )? € £}
The constant £, %4, %, are determined from size condition

Now we consider a produce for constructing tests that has some intuitive appeal and that.
Frequently, though not always, leads to UMP or UMPU test. Also the produce leads to test that have
decided large sample properties

Suppose we are given a sample (x4, ..., x;;) from a distribution with p, d, f f(x, 8 ) (where 8 may be
a vector) and we deice to test the null hypothesis H, : 8 € w(c ) against the alternative
hypothesis H; : 8 e w(c 2) where (2 is the parameter space,

The likelihood function of the sample is given by

L(8) = 1(6,xq, ..., x,) = 1_[ F(x1,0)
i=1

Define the likelihood ratio
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max L(0)
__Bew
"~ maxL(0)

0 0

Where ma;c 82)(9) denotes the maximum of the likelihood function when 8 is restricted to values in
w and max L(6) denotes the maximum of the likelihood for when 6 takes all possible values inf2
Obviously, 0 < 4 < 1 and Ais also to 1 of the sample shows that 8 lies actually in w.
Definition The likelihood ratio test of H, against H; has the critical region

w={1Z1,}
When 41, is determined by the size condition

Sup

ety P2 < Ao/ BeH,} =

Remark (1) For testing a simple hypothesis against a simple alternative likelihood ratio test is
equivalent to the test given by the Neyman -Pearson lemma.
(i) if a sufficient statistics exists the L.R test is afunction of the sufficient statistics.

(iii) Under some regularity condition -2 loge A is asymptotically distributed as a x2 r.v. with
degrees of freedom equal to the difference between the number in w.

Example: (1) Let X be a r.v. having a normal distribution N(y, o) where o (=0,) is known
We want to test Ho:p = u,
Against Hi:u # U,

We have the likelihood function

— 1 N (xi—w)? 2
L(w) o 27T)ne 1 /205
Then

max L(u) = 1 o-Ilxi—mo)?/208
0

( an/Zn)n

Since MLE of Wwis fi = X , therefore

1 (o 2 /5 r2
max L = —ne—Zi (xi—%)?/20¢8
H o) (00,/2m)
The LR test critical region is given by A<M
max L(u)
T <2,
max L(w)

2
o~ ZP(xi—no)" /208

—_—— <A
2 =710
e—Z?(xi—x) /203

L )2 - 2
eZU%[Z(xl X) 2= (xi— o) <1

-n(X-po)®
OrTg0 <logl,



Remark (i) the above test is not UMP test since there exists other UMP tests for Hy: 4 > pgand

Hi:p < pg (I1) @ ~N(0,I) under Hy, so that k can k found easily by using size condition

(2) Letx ~N(O,I) where both u and ¢ are unknown we want to test

Ho:p = o
Against Hi:p # pg
We have the likelihood for
1 _LZT‘(X _ )2
L(u,0) = e 2075 1TH
H (ov2m)

Under Hy: it = U,, (given) so the MLE of ¢ is

Therefore, we have max L(u,0) = L e~ 2<xi—#0>2/2&3

(&oy/2)"

n
2

i _
N

maxL(u,0) _ 1 —S(xi-%)? /9 @2
And 0o = —(&We /2&
(&y/2m)™
The L.R test critical region is given by
max L(u, o)
— Hb
A= max L(u, o) < 4o
H,
& n
Or (EZ)
2
Or Z—(z) £ AIO
n&3
Or —;;'21&

Since &2 = n(x — no)? + n&?3the above cr region becomes

= 2
nx — uo
( SZ/“' ) > &/I
OI‘ \/ﬁ[(fz_uo) > &/"
s
2 2
Where s =2&TD _ns,

n-i n—i

58
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It is know that @ has t distribution on (n — 1)d. f under H, There fore the values of £ can be

found from the size condition
P{]Y| > £} =x
Where Y~t,,_;

(3) Let X ~N(u, o) when both u and o are unknown we want to test

Hyp:0 =0y
Against
H;:o # oy
We have the likelihood function
1 —LG(x-— )2
L(u,0) = —=—=—e 20250 5H
H (oV2m)"

UnderH,, the m,l,eof pisfi = x

In general, m,l,eof uis i = x andm,l,e of g is

Then we have

maxL(u, o) 1 — S (=% 9 2
=— i 2
H, (004/21) ¢ / %

2

ns
— 1 _20'2
n e s

)

maxL(u,0) 1

Ho (601/271)11
1

:—ne

)

maxL(u,0)
L.R test cr region is given by A= ﬁ‘(’m) <Ao

wo

And e~ L(i=D? /342

_n
2

or ) {7 <y,

0o

Or yze2¥D < 3, wherey ==

a5

n n "
We note that y)Ee_?(y’_l)has amaximumaty =1

Therefore A < A, ifand only if ¢ > %, or 4 > # that is the critical region is

a5 a5

{(n)sz > Ayor ms” kl}

2 N o2
(ms® _ 2 (’:2 2" has x? distribution on (n-i) d, f using the x2_;tables and size

[

But it is know that

a5

condition we can get the values of £;and %,



(3a) suppose in example 3 the value of u(= y,)is know. Then the L.R cr region because

2 2
nsg nsg
—>C07—>C}
{02/ 1 ag/ 2

Where s = XMx; — po)?/n

Z (x;—%)2

In than case —2 — %) hasx?

0

(4)Let x have an exponential distribution
1 _x
flx,0)=Ze b(x>6)

We want to test H,:0 =46,
Against H :0=86,

We have the likelihood function

1 _nx

= e—n e 6
Then we get
( 1 —g—fforf>90
maxL(0) _ 4 CAR
H - i _
o t We n forx<6,
maxL(0) _ i _,
Also i = e
Because m,l,e of is 0 = ¥
The LR test cr region is given by x <A,
Where
{ ——Z xif>90
{ (90)”
e M for x<6,
&

Since ¢"e "(#~) at lains maximum at ¢ — i taking ¢ = Z we see that A=i if 4 = i and AL, for

8o
> R0 < £ <i)

LR test critical region because

{i > /c} or{x > £}
o

60

Remark (i) if one take H; : 6§ = 6, we shall get the L.R critical region as{Xx > #} in both case of one

-sided alternation the L.R test are UMP test.

(2) Since Y.} x; has gamma distribution we can find the value of £ by using size condition

(5) Let (x;,..x,) bea,r,s from N(u, 0;) and (y;,Yn2) be a,r, s from another N (u,,, g,) where two

samples (distribution) are independent.
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We want to test

Ho:py =ﬂ2}
Hitpy # pp

Where it is assumed that g; = 0,(= ocunkown ) we that the like hood function

1

1(uy, pp,0) = W

P i) 2+ E i 1)

In general the m, [, e of 4, u, and o are

. . n
— l’ — —_ l
Hh=x=— xi:ﬂ2=%=—g%

i 245

— _ nysi+n,s;

And a° = s*(say)

nitn,

Also st = ! Y1(x; — %)% ands? = nLl (yi — 4)*

Ty
Therefore

maxL(uy, Uy, 0) 1 _(utny
koo (2mymtie(sEymns ©

Against them, [, e under Hpare

. mxt+ng ( )
= =———-=m(sa

Uy = U n + 1y y
1

n1+n2

And o2 =

XT(x —m)? + X (x; —m)?

= DD+ G-mP+ Y (- + @ -]

n, +n,

1
n, +n,

DR+ mE—m + ) (4~ B + g (G —m)Y

1 ny n2
nin
= D=0 ) PG )
i i

n, +n, ny

nin;

=5+ (% — 9)* = s} (say)

(ny +n,

maxL(uy, 4z, 0) I _nlzﬂ
HO - (m)n1+n2 (sg)n1+n2 e

Therefore

So that the LR cr region is given by

Or —2</k

(F—y)?
0 N )
' (na+12)™ (-47)
(F—y)?
Or YRR
s2(nrtnn)

_ mys?4nysi 0 ngtmy 2

Where s? =

ni+n,—2 - (n1+n,-2)
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The cr region can be within as

SO [
ny n2
Since under find £ such that P{y > £} =x
Where Y~tn +n,-2

(6)Let (X,, . an) be a,r,s from N (y, g;) and(yl, . ynz)n N (u,, 0,) where two samples (and two
distributions) are indecent

We want to test

. Ho: g1 = 0'2}
Against H, : 0, %0,
We have the likelihood function
1 _1[2?1(961-—111')2 , z?zwi—uoz]
1, . 120°") = me o

(27-[)711 +n,0; 70,

In general, be m, [, e of uq, u,, 01, 0, are
nq n;
— -~ — ~ 1 N2 — 1 —\2
Uy =X Uy =Y,01 = — § (x; — %)%, 05 = — E (i — %)
ny & N, &
l L

So that = s?(say) = s3(say)
1 _nymy

n e 2
(27T)n1+n2 (512) 5(522)112/2

max L(uq, o, 01,0,) =

Against, the m, ], e under Hy, are

1 nq nz
A=_'A=_'A=A=A= -—_2+z C— )2
M1 =X,y =Y,010 =02 =0 n + 1y Z(xz x) .(’y*z Y)
i i

n,S¥ + n,ss

— 2
= s“(sa
ny +ny ( y)

1 _nitng
So that max L(uy, pz, 01,07) = g e 2
@mymtna(s?y z

Therefore, the LR cr region is given by

P PN L)
_(s1)2(s3)2 <1
- ni+n, o

(s?) 2

ni nz

s 2 (s3)2

<n15%+nzs%> nl;—nz

ni+ny

A

Or

<,

ng
[(nl:l)f]T

((Zf—i:ll)) ni+ny < (o]
[ +(1‘L2—1)f] 2

Or

2

2
Wh — nyS7 nySsy
ere f =" @m0

Setting g(f) forthe L. H. S of (i) we have g(0)=0 and g(f)— 0. Furthermore g(f) attains its

f _ ni(ny-1)

maximum for = X
may ny(nyi—1)

it is impressing between o and f may and derision in (f may, ).



Therefore g(f)< 4, if and only if f < £, or f > the LR cr region can be within as {F < £, or F >
%2}

2
Wh F — nlsl/(nl_l)
ere 1252 /(1)

But underH,, F~Fn,_1,,_1,

Hence %4, %, can be obtained from the size condition P{f > %, or F < #,} =xwhese F~F,

1-1,np-1

Some distribution:X?,t and F

Definition: A r,v.x is said to have a Gamma distribution G («, ) of its p.d. f. is given by

flx) = %x“‘le‘ﬁ“ ;x>0

=0 sx <0
(x>0,6>0)
We have m, g, f M,(t) = (1 — é)‘“, t<p
E(X) =x/B
V(X) =oc/B?
If oc= 1 we get the exponential distribution

fG) =BeP* x> 0(8 > 0)

EX)=1/pB
v(X)=1/p*
If oc=n/2(n a positive integer) B = 1/2 we get the x? distribution on n,d, f where b, d, f is
1 n,; _x
fx) =——x27'¢ 2,x >0
2§I(n/2)
Wehavem, g, f M, (t) = (1 —2t)™"/2
E(x)=n }
v(x) = 2n

Definition: A r, v X is said to have a t —distribution on n, d, f ifits b, d, f is given by

l—.n+1 2 .
f(x)z%(l+x _Tl,—OO<x<oo

n

If X~n(o — i),y~x*(n) and x and y are inept then T = X/_|¥/,, has t(n)

Define: A r, vX is said to have a F — distribution on(m, n)d, f ifits p, d, f is given by

LAY e Do
X)) =—F—Fc—) 2 —=—7 x>0
Ot

=0 , x<0
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Of x~x2(m) and y~x?(n) where x and y are independentz = );,/Tm has F(m,n)
n

Percentage points the upperx — percent point of the x2(n) distribution is x%n, «c where
P(x*(n) > x*n, ) =«
The uppere — percent point of thet(, distributionis, tn, « where
P(tm) > tn,«) =
Since t-distribution is symmetrical
P ([ta] > tasy, ) =
The uppere — percent point of the F(m ,n, «) distribution is Fm ,n, «c where

P(F(m,n) > F,m.n, ) =«

Note that Fm,n,i—x= L
F g

Use of x*t and £ distribution in testing problem

Use of x*distribution (i) Testing the variance of a of a distribution: Given a sample (x;, ... x,,) of
size n from a normal distribution N (u, o) where o is unknown, we would like to test H,: 0 = g,

against alternative >0, or o<g, or g # g, the tests are summarised n follows

Casel u know

Alternative reject H,at level xif
Ho:o > 0, YHx; —w)?/oZ > x*n, «
Ho: 0 < 0y " Zxin,x

" 1]

< xin, X /s
Ho: 0 # 09 2
or > Xn—i,—oc/2

Case Il u know

Alternative reject H atlevel xif
Ho:o > 0y (n—1i)(s)? 2 x’n—1ic,
Ho: 0 < 0y " Zx?n,x

n " < xzn’ X X721_L-,_o</2
Ho: 0 # 0p

2
or > Xn—i,—oc/2

Where (s)? = %Z?(xi — x)?

n

(2) Testing proportions in £(>2) classes Suppose a, r, v takes values in one of £(>2)mutually

exclusive classes A,.....Arwithp = P(x € A)), 1,2, ..... &, Zf‘ pb; = [ we want to test the hypotheses
that

Hy:bi =p0Gi=1,...4)

Against H;:p; # by forall
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For arandom (x, ... x;) of n observation let the observed frequencies in the £ classes be 04, 05,
0,27 0; = n)and the expected frequencies under the H, be ey, e,, .......e5 (X]'e; = n) where e; =

nb; calculate

* 2
X2 = Z (0; —€;)
i €i

Them, for large sample, x?has x?(# — i) the test of H, has the cr. region

2

2
X5 2 Xp—ip

Note: it we want to test H,b; = by, .......= bn we take p{ = %to any

(3) Testing goodness of fit: given a sample (x4, ..x;) of Observation on a.r.v X arranged in the
form of a frequencies distribution having # classes Ay, ..... A, we would like to test the hypothesis
that distribution of X has a specified from with b, d, f (or b, m, f)f, (x, 8) the parameter 8 be a

simple one or a vector (o0;, .....6,)

Let the observed frequencies in the £ classes be 04,0, ...., 04, Zf‘ 0o; = nand the expected

frequencies under H, be ¢;, e5, .... e, Zf‘ 0j=n
Such that e; = Py_(x € A;) Calculate

2

» 2 #
2=Z(Oi_el)) =zo_i_n
X - el e;

4

Then, for large sample, x*has x? (% — i) the test of H, has the cr. Region

2

2
X5 2 X

Note if r(of £) parameters in 6 are estimated from the sample then x2 has x2(%£ — r — i)if any
expected frequency islass then 5 we pool this class with the adjoining class and denote by# the

effective number { classes after paroling
(4) Testing independence of two attributes in a £x£ contingency table
In a (#x¥)_contingency table for two attributes, we want to test

H,: Two attributes are independent

Against H,: Two attributes are not independent

Let 0;; = observed frequency in the (i, 7) the cell

« o«

And e;; = expected a=(ith row total x/t colum total)n “under H,

Calculate

(oij—eij)?
X2 = 2{6:1 Z£1 }ef

t
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Where n=total frequency. Then x? has x? on(# — i)x(£ — i)d. f the test of H, has the cr. Region

x2

> Xt

(5) Testing the homogeneity of #(> 2) correlation coefficients.

Suppose 1y, .... 1 are £ sample correlation_coefficients corresponding to £ normal
Distribution with population correlation coefficients p;, ... p, we want to test

Ho : p1, P =,..Pp

Us H;: all correlation coefficients are not equal we use the friskers z-trans function of correlation

cients oi g BT ¢ 1y D
coefficients given by z = p log. i+r,S =3 log. i, 50 that

1
(s =)
n—3
Where n is the sample size.

We calculate z1, z3,.....Z# corresponding to ry,rs,.....Ix having sample size ni,nz,...ns and define

# #

7= —3z/() (- 3)
i i

And x% =Y —3)(z — 2)?
Then x2has x2on (£ — i)d. f and the test of H, has cr. Region

X2 2 X2(n-i)«

Remark: if H, is accepted we may obtain an estimate of the common corresponding coefficients

p*(say) by solving
1 1+p*
Z=3 log, 1=,
Uses if t-distribution:
(i)Testing the mean of a single population: let (x4, ... .....x;) be a sample of size n from a normal

population N(u,d?) and, as usual, X and s? are the sample mean and sample variance. We would
like to let the null hypothesis H,:u = pu, against alterative yu > u, or u < y, or u # u, the tests are

summarised as follows:

(2) Testing the equality of two population means: let (xy, .....x,;) and (¢4, ... ... Yn2) be two

samples from in dept normal populations N (u;, 07) and N(u,, 0;) respectively let X, 4, sZ, s3 be as

usual and let
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(ny —D(sp) 2 + (np — 1)522
n,+n, —2

()% =

Be the pooled variance.

We would like to test Hy: @y = u, against alternative yy < pyy or yy # U, the test are summarised

as follows:
Casel
Alternative Reject H, atlevel « if
Hi:py > pp =Y > 7.
% o3
{n—ﬁn—z}
Hi:py < pp Lz
.
Hi:py # pp L] 2 Z )2
il
1 n2

Case Il o4, 0, unknown (0; = 0;) essential corruption

Alternative Reject H, atlevel o< if

Remark: if we want to test H, = u; — y, = (# o)we use the statistics

&—4) — (6)
1 1
&t

Uses of F-distribution:

(1)Testing equality of two population variances:

Let two samples of sizes n; and n, be given from two independent normal population N (¢, g;) and
N (uy, 03), respectively .Let sZ, s 2 be the two sample variance. We would like to test the null

hypothesis H,: 0; = 0, againstH;: o; # o, The test are cr follows:
Casel u,, 4, known

n

Yig (cimpu)? ny

S22 (yi—p2)? © oy Mm2/2
i=

Reject H,, if either

n
or 5 (wimu2)? ny
S (mp1)? T g M2/

Caselll u4,u; known
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2
Reject H, if either 3 > Fr, 10,102 If51 > 5
(s1)?
Or (s2)1 > Fnz—l,n1—1,o</z Ifs, > s

(2) Testing the multiple correlation coefficient: Given a sample of size or from a bivariate

normal population (xy, x;, x3) with multiple correlation coefficient Ry ,3y of x107(x, x3) we would
like to test the null hypotheses Hy Ry 23y = 0 let the sample multiple correlation coefficient be

Ri(23)- The test is to reject Hy at level o if

7’(223) n—3

. >F
2 Z 1'2n-3,x
1-— 1(23) 2

(3) Testing the equality of means of £ normal distribution (£ > 2)[see left page]

Farceur’s z-transformation of correlation coefficient: Suppose a sample of size n is drawn from

a bivariate population with correlation coefficient the variables Fisher intruded the transformation

z=2lo
= 21091

Where r is a sample correlation coefficient Though the population correlation coefficient P may be
widely different from zero, the new statistics z may be amounted to be normally distributed even

when n is as small as 10 it has hen show that z has approximate mean

—1l 1+p

And approximate meanl/(n “3)ie
Vn—=3(z — §)~N(o, 1)
(DFor testing H, : P = P, against H; : P # P,we reject H,, if
Vi =3[z = §] > Ney
Where &, = %loge g and N, is the appear < % point of normal distribution N (0, 1)

(ii)For testing H, : p; = p, against H; : p; # p, involving two populations, let 11,7, be the sample
correlation coefficient for two independent sample of size n,, n, from the two populations and let

Z1 Z,be there transformed values,i, e

1 1+T'L'

z; = Eloge 1=, (i=12)
The test is to reject H, at level « if
|21 = 25| SN
1 1 Z o /2

NnNi_3 MNp-3
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(iii)Let 7,75 ..... 74 be sample correlation coefficient for £ sample of sizes nq,n, ...n,; drown from
# independent vicariate normal population with correlation coefficients pp; .....pg. Let z4, z; be

the transformed values and let

Zf&=1(ni —3)z;
Zik=1(ni - 3)

Z =

The test is to reject H, at level « if

”
Z(ni —3)(zi — 2)? > X1«
i=1

If H, is accepted an estimate of common correlation coefficient p is p” wherez is the transformed

values of p*(x) For large sample

pb~N <p @>

n

Large sample tests so for we have considered tests of hypothesis which contain assumptions
regarding the population are satisfied .Now we consider some approximate test which are valid only
for sufficiently large samples, but they have wide applicability and hold for all populations satisfying
certain general conditions rather than being valid for some particular populations only (e.g. normal )

(i)Testing a proportion: Suppose in a population is the proportion of members with a qualitative

character A. Let p be the proportion of members with A in a random sample of size n. we would like to
test the hypothesis Ho: P=P .The test is to reject Ho at level a if

[b - Po] SN
JpoA—poym_ *

(ii)Testing the equality of two population proportions: Let p;, p, be two population proportions and

b1, b2 be the two sample proportions dream from there indecent population the test of H,:, Py, P, isto
reject H,at level «if

[b: — 2]
Joi- -+

= No</2

Where

_ mibs +mpny
ny +ny

b

(iii)Testing for a st. deviation: let s be the st. Deviation of a sample of observation of size drown from a

population with st. Deviation a(x) the test of Hy: 0 = g, is to reject H, at level «if

[s — o] SN
cro/\/Zn/ “/2

(iv)Testing for equality of two population st. Deviation Let 58;, 8, be the st. Deviation of two sample of

sprees nq,n, from two independent population with st. Deviation oy, 05 Let

2 2
52 = n 81 +ny85

ny +n,



The test ofH, : g4, 05 is to reject the at level «if

[81 — 53]
g o Nere
8o, Y I,
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Definition:- For a random sample (x4, ..., X;;) from the distribution of a r.v.x havingb,d, f f(x, 8) Let

LiLi(xq, ..., xp)and Ly (x4, ..., X,) be two statistics such that L; < L,. Theinterval [Ly,L,] is a

confidence interval for 8 with. Confidence coefficient 1—o (0 <x< 1) if Py[L; < 6 < L,] = 1—x for

all 8 € 2 L, and L, are called the lower and upper confidence limits, respectively at least one of them
should not be a constant.

Interval Estimation

Estimation of a parameter by a sample value is known as point estimation. An alternation produce is to

give an interval within which the parameter may be supposed to lie with high probability. This is called

interval estimation and the interval is called the confidence for the parameter

Suppose a,7, v x has Normal distribution N(u, o) with unknown mean u and known st. Deviationo. Let

(x;, ..., x,) be the values of a random sample of size or from then distribution .We know that the sample

mean X~N (y, \%) and, hence@ ~N(o,1). It follows that
Vn(x -
p {—1.96 < % <196} = 0.95

Or, equivalently,

_ _ g
P{X —196Z2u< X+ 1.96—} = 0.95
H N

This shows that, in respected sampling the probability is 0.95 that the interval

— o _ o
X-196—;X + 1.96—}
oo oo

Will include u, We say that above is a confidence interval for y with confidence coefficient,95. The
two end points are known as 95% confidence limits foru.

Let us now consider the general problem Let a, r, v x has distribution depending on an unknown
parameter 6 which is to be estimated. Suppose Z is a statistics (usually it is a function of a sufficient
statistics if it exists) which is a function of 8 but whose distribution does not depend on6. Such a
statistics z is called a ploetal function Let 1; and 1, be two numbers such that

P, <Z <A} =1-x - (D
For a specified € (0 <x< 1)
The above inequality can be solved such that it assumes the from

P{O1((x1, ., X)) < 0 < 65(A4,..45)} = 1—x

For all 8 where 8;and 8,are random variables which do not depend on8.Finally, if we astute the sample

value [0 ((xq, ..., X)), 82 ((xq, ..., x5))] becomes a confidence interval for 8 with desired confidence
coefficient 1—ox.

Remark: the numbers 14, 1, may be chosen in several ways, giving rise to several confidence intervals.

We usually choose confidence intervals of shortest length.



Example (i) X~N(u, o) where o is Known and p is to be estimated

Letz=m
g

Which has N (O, I') distribution For a specifiedx let Ny, be the % % critical value of N (o, 1)then

Vn(x —
_ o _ 4 .
Or P{x—Nx/zﬁ<u<x+N«/zﬁ}=l—«
— o _ g
So that P{x—Nm/Zﬁx+Nm/zﬁ}

Isa confidence interval of u with confidence coefficient (i—x)

(2) . x~N(u, o), 0 unknown and u to be estimated
Letz = —Vn(f_“)where s? = i_LlZ?(x —x)?

Then z has t(n-i) distribution , so that for a specified «,

Vn(x — ) .
P{tn—l,o(/z < f < tn—loc/z =1—
Y S o -_-% S .
Or P{X - tn_lr“/z\/_ﬁ < ll < X + tn_l,O(/Z \/_ﬁ} = 1—X
o S S S
SO that {X - tn—l,oc/Z \/_E’X + tn—1,0</2 \/_ﬁ}

Is a confidence interval of y with confidence coefficient (1—x)

(3) x~N(u, o), u known and o is to be estimated
n
Letz = Z(xl — p)?
7

Then z has x2 (n) distribution, so that for a specified «

X0 —p)?
P{szl,i—oc/z < LU—Z < Xr%,i—oc/z =1-x
— 12 N2
or P{Z(le w2 o2 <2<2xl h) }: 1—o
Xn,l—o(/Z Xn,l—oc/z

There, a(1—x)% confidence interval of o2

X‘)?L,l—O(/Z ' XZ

{Z(xi —w)? X(x; — #)2}

n,1-«/2
(4) x~N(u, o), Unknown and o is to be estimated

(n-1)s?
o2

Let z = Where s2 = ﬁZ?Oﬁ — x)?

Then z has x2 (n) distribution, such that
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— 0_2 n,i—
—1)s2 —1)s2
or P{@)S<JZ<% ”}:L«
X2 X
n,i—-o«/2 n,i—-o«/2

Therefore, a (i—x)% confidence interval of a2 is

{(n —1)s? (n— 1)52}
X? T X2

n,i—o/2 n,i—o/2
(5) Let x have an exponential distribution with parameter A which is to be estimated
Let z = 2Anx

Then Z has x2(2n) ditribution, so that for a specified o

P{Xzzn,l—oc/z < 2nx < Xzzn,l_o(/z} = [—X

XZn1-u/2 XFn /2

n1—-« n,«

Or P = Z L =
2nx 2nx

Therefore, a (i—x)% confidence interval of A is

Xzzn,1—0</2< <X22n,,o</2
2nx ’ 2nx

(6) Let X ~*N(u, o) and y “N(u,, 0,)where o; = g, (unkown ). We want a confidence for (u; — 1)
_ (x =) — (1 — p2)
’ 1 1
S n_l + n_z

_ (m-Dsf+(ny-1)s3
n1+n2—2

Let z

Where %, ¥, s are usually defined (s?

Then Z has t(n,; + n, — 2)distribution, such that

( )

_ =y — ( — 1)

P{ tn,+n,-2,0/2 < 1 1 Uy +n,—-2,%/2 } =i
k S ’n_l + n—z J
o 101 e - 11 .
OrPi(x —¥) — tn, +n,-2,/25S Tl—1 + s L —mw)E-y»+ tn, +n,-2,0/25XS n + "y =1—

So that a confidence interval for u; — uy is

_ 1 1 _ _ 1 1
(x - y) - tn1+n2—2,oc/2$5 71_1 + n_z (x - :V) + tn1+n2—2,o</2$x5 n_l + n_z

With confidence coefficient 1—

(7)Let X *N (uq,07) andy ~N (u,, 0;) where pq, 4, are unknown and it is requested to obtain a

2

. . a
confidence interval ofa—l2
2

s3/o}
s3/03

LletZ =

(St >$9)

So that Z has F distribution on (ny; —i,n, —i)d, f



Then
_St/at .
PyFn —in,—iji-oc/2 52757 L Fu—ing—iji—oj2 ( = I—X
2/03
or i code S | 4
Fpi—ing—ii-x/2 03 Fni-ing—ii-«/2
or il cote S | 4
Fpi—ing—ii-x/2 03 Fpi-ing—ii-«/2
1 s2 s2
sotht )
Fnl—i,nz—i,i—oc/z 522 Mimbiz bt 0(/2 522
. . o? . . - .
Is a confidence interval of 3 with confidence coefficient i—
2
(8) Simultaneous confidence region for (i, )for a normal distribution.
Let x~N(u, 0), i, o with unknown
One many chose a confidence region for (u, o) using the two relations
p {- ¢ S cu<i—t g,
X—lp 12 mS UK X —lpqup2——=( = 1—X
"2 \n /2 \n

Diagrammatically shown as the shaded region below

Where t, = X — ty_j«/2 =etC

S
Vn
_(n—-1s?

2
xn—l,oc/z

a

But it is difficult to find the probability of the sample to full in the shaded region (confidence region)
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Alternatively, using the independence of X and s? we chose the cofidence region by the help of relation

X—u
P{—N £ ——ZN, =1-x
{ «<q/2 O'/\/H 0(1/2} 1
-1 2
Ad p {xTZL—i,OC/Z <t (,z)s < xrzl—i,oc/z} =1-x;

Since X, s? are indept

X—Uu 2 /M/ 2 }2(1—“1);(1_()(2)

P{Nocl/z < O'/—\/ﬁ < Nocl/Z'xn—i,oc/Z < o2 xn—i,oc/z

Chosing «;, %, such that (I —o<,), (i —o,) = i—x we can

Obtain the boundaris of the confidence .region without difficully this is shown by the shaded region
below

Where q = N, /2
_ 2
q1 = xn—i,i,oc/z
Approximate confidence intervals(for large samples)

Let x be bernoulli . v with



P(X =1) =P,P(x = 0) =1 — p we want to find confidence interval for P.

For lage sample size ,n, we have

bp—p

T Ve

Or
p—p

W NN(O, 1)

Where p is the sample propostion

Them , approxi mately,

b—b }
P{-Ny, S ————< Ny, { = 1-x
{ = pa-pym

or P{b—Nxz D 2 by N, /@}:1—«
So that
1- 1-
b=y, [Py, [P

Is a (1—)% confidence interval for P

() For two sample we can similerly find a confidence interval for Py, P, as follows:

P (bll bz) = (Pl'PZ) =

P{N,, € Ny, = 1
1 1 2
BT D) (7 +7)]
Where b — nip1+n,ba

nit+n,

So that {(b1,b2) = Naey,/IDT = B) (- + =) burb2) = Ny, DT = D) (- + 1)}

nq ny ny
Is a (i—o)% confidence interval for p; — p,
(iii) Let x be a, 7, v having mean y, variance a2 and we want a confidence interval for o

For that approximately .

Or P{S—NKZJ%<J<S+N«2\/%}=1—OC
Then P{s —NKZ%,S + Ny, \/iﬁ}

Is a (i—x)% confidence for o

(iv) For two sample we an similerly find a cofidence interval for o; — g, as follows:
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( .o \
P{—Nxh( S1— 52 (04 02)/

=1-«
1 1 /5 }
\ S\/m+m )

nys2+n,s3

1 1 1 1
(sy —s2) = Ny, ’2_111 + ' (s; —s2) + Ny, s /E-}_ o,

Is a (i—x)% confidence interval for (o7 — 03)

Where s? =
Tl1+n2

So that

(v) Let (x,y) have a bivanate normal distribution with coefficient P and me want to find a confidence
region for P.

By using Fisher,s Z transformation

and z=:-log, —

whose 7 is the corr crofficient in a sample of size n

Then %~N(O,I)
So that
P{-Ny, <Vn—3(Z—3) < Ny} = I«
or P{Z—;N <3<€Z+—N }=l—o<
Vn—-3""%/2 Vn—-3""%/2
So that

1 1
e~ g w2 + g e

Gives a (i—x)% confidence interval for £.From this we can earily obtain the corrponding confidence
interval for P.

NON-PARAMETRIC INFERENCE

In all problems of statictics inference considered so fan we assumed that the distribution of the
random variable breing sampled is know n except for some parameters . in pratice however the
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functional from in the distribution is seldom if ever, known if is therefore desivable to devise some

produres that are free from this assumption concering distribution such produres are commonly

refered to as distribution free or non-parametric methods the term distribution free refers to the fact

that no assumptions are made about the underlying distribution execpt that the distribution function

being sampled is absolutely continuous or purely discrete. The term non-parametric refers to the
factors that there are no parameters involved in the traditional sense of the parameter used so for.
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We will consider only the inferential problem of testing of hypothesis and dercribe a few
non-parametrictests

Single- sample problems : (a)The problem of fit : the problem of fit is to test the hypothesis that a
sample of obsevations (x;, x,,) is from some specified distribution against the alternative thatitis from

some other distribution.Thus we have to test
H,: x~F,(x) = F,(x)
Against H,:x~F(X) # F,(x)for some x

(i)Chi- square test: Let there be £ categories and let b; be the probality of a random obsevation from
F,(x) to fall in the ith category (i = 1,2, ....n).For a sample of size n, Let 0; be the obsevarved fregnecy
in the ith category and let e; = np; be the expected frequency in the ith category under H,.

To test H, we use the chi-square statics

n N2
) (0; —ei)
= ze—
i=1 t

The larger the value of x2 the more likely it is that the 0; s did not come from F, (x). The x? —statistic
for large samples has a x? distribution on (# — 1)d.f .Thus an approximate level « test is provided by
rejecting H,, if

X% > X qa

(ii)Kolmogoror — Smironv one sample test : For the sample (x;, ... x,)let the empirical distribution
function F,(x) be given by

0 if x < X(i)
E) %)y if xpy LX< X(p-i)
[ ifx > X(n)

(£ =12,..n,—1) whese x(1), X(2), .... X(n) are the order statistic, Evidently,

number of x;,s ([, £ <n) < x

Fny(x) =
n

For testing Hp: F(x) = F,(x) against the two sided alternative H;: F(yy # F,(x) we use the

Kolmogoror — Smironv statictic

_ Sup

D, X

[Ey () — Fp ()]

It can be shown that the K-S statistic D,, is completely distribution free for any continouns distribution
F, ()

At level «, Kolmogoror — Smironv test rejects Hy, if

Dy > Dy«
Whese P(D,, > Dy, «) KX
Tables of D,, « for given « and n are available

Remarkl:For testingHy: F) = F,(x) against one-sided alternatives Hy: Fyy > F,(x) or Hy:F) <

F,(x) based on one-sided K.S statistics D,;fand D;; are also available

Remark 2: For small sample x? —test is not available but K.S test can be applied. For discrete distibution
K.Stest is not availible but x? —test can be appled K.S test is more powerful then x? —test.
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(B) The problem of Location: Let (x;, .... x,) be a radom sample from a distribution F(,) with unknown

median § ,where F,y is assumed to be continus in the neigbourhood of §. By definition of median

Px=¢ = % .We would like to test the hypothesis

(x) If n>25, normal appronimution may be used

R-n/2

We take
n/4

~N(o,1)

H,: & = o against one sided or two sided alternatioes

Sign Test: We from the n differences (x; — ép) = 1,2 ... ... ... n and find out the number, R,of position
differences (differences having postive signs ) i, e when (x; — &p) > o.

If Hy is true, P(X; — &, > 0) = %,i =1,2,....n and R has a Biomial distribution with paramer% . We

may use an exect test ofH, based on the Biomial Distribution. In the case of one-sided alternative
H;: & >¢&o

The sample will have an excess of positive signs and in the case of
H;: ¢ >¢&o

The sample will have a small number of postive signs

The signs test based on R, for testing H, can be summarised as follows :

The critical values Ry, Ry, Ru/2, R /2 are calculate from tables of Biomaial distribution

Rajred —sample signs test: Here we assume that we have a random sample of n pains (x;, x,,) giving the

the differences
Di =Xi—Yi ,i = 1,...Tl
Itis assumed that the distribution of D=X-Y is absolutely continous with median ¢

We have, now a single sample Dy, ..... D,, and we can test H,: § = &, which can be taken to be oby the
sign test descrited above.

Remark the above two sign test s are , repectively aralogoun to single sample t — test and paired t-
test for testing location of a normal distribution,

Two sample problems : let (x;, ... ... Xp) and (¥, «er - ¥n) be independent random sample s from two

absolutely continous distribution F,(x) and F, (¢) , respectively
Suppose we want to test

H,: F(x) = E,(y) forall x
Against H;: F.(x) # F,(y) for same x

Run test(Wald -Wolfowitz): we assarge the m, x’s and n y's in increasing order of size
XYYXXYYYXYand count the numbers of runs .if H, is true the (m+n) values will be well mixed up and

we expect that R, the total number of runs , will be relatively large. But R will be small if the samples
come from differernt popaltions i, e H, is false in the extreme case, if all the value of y are greater than
all the value of x, or vice — vera, there will be only two runs

The run test of H, against H; at level «is to reject H,, if

R € R
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Where R, is the largest interteger such that
P(R € Ry/H,) €x

It can be show that distribution of R, under H,, is given by

=z =220

And PR =2e+i/H) = (")) + (M)

['4 < —i X —i ('8
Tables of critical values of R based on above have been given by swed and Eisenhant

For large m,n(both greater then 10), Ris asymptohcally Normally distributed with

2mn
E(R) = +1
m+n
And V(R) _ 2mn(2mn—-m-n)

(m+n)2(m+n—i)

Median it test: We arrange the x’s and y’s in asscending order of size and find the median M of the
contied sample let

V = number of x'swhich are € median M

If Vis large it is reasomable to conclude that the actual median of x is smaller than the median of Y
i,e H,: F,(x) = Fy(x) is respected

Hown of H;: F,(x) > Fy(x) —

On the other hand , if V is too small it is reamable to condude that the actual median of X is greater
than the median of y i.e H,: Fy(x) = F,(x)is respected in fovoues of H;: F, (x) < Fy(x)

For the two sided alternative , we use the two sided test .
The median test can be summarised as follows:

It can be shown that the distribution of V, under H,, is given by

() o)

PV =u/H,) = % u=o0,1 N
)
Where m + n = 2p, p positive integer
And
(")
P(V =u/H,) = , U, 1.......min(m, p)

T miny
"p )
Where m + n = 2p + 1, bis a positive integer

Wilcoxon- Mann —Whitney U test: This is the most widely used two- sample non-parametric test and is

a useful alternative to the t-test assumotions.

The test is like the run test based on the pattern of m,x’s and n,y’s arranged in ascending order of
size . The Main- Whitney U statistic is defined as the number of times as X preades a Y In the combined
sample of size m + n. We define

_(1,Xi<yj i=1,.... m)
Zij = O,xi>yj(j=1-------n
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And write
n

=S

i=1i=1

Note that Yi; z;; is the number of y;,; that are larger than x; and hence U is the number of values of
Xy eervee e X, that are smaller than each of y,, ...... ... , Vn- For example , suppose the contined sample
when ordered is as follows :

X, <X <Y<Y, <X, <Y, <Xj3
Then U=7, becouse there are three values of X<Y;, two values of X<Y, and two values of X<Y;

It is obseved that U=0 if all thex;'s are larger than all y;'s and U=mn of all the x;'s are smaller than all
the y;'s. Thus 0 € U € mn. If U is large the values of y tend to be larger than X (Y is stochastically larger
than X) and this supposts the alternative F.(x) > F,(x). Similarly, if U is small, the values of Y tend to
be smaller than X and this supposts the alternative F.(x) > F, (x).

Thereforer, U-test can be summarised as follows:

H, H; RejectH, if
F.(x) = E,(x) F.(x) > E,(x). U>C(C
F.(x) = E,(x) F.(x) < E,(x) UZC,
F.(x) = F,(x) F.(x) # F,(x) Us CorUZ<C,

It can be shown that Under H,

mn
EQU) = —
w ="
And V(U)=W

The tables of distribution of U for small samples are given by table and Mann-Whitney. For large
samples U has asymptotic normal distribution,i, e

y_mn

2 ~N(0,1)
mn(m+n+1)
12

APPENDIX

Distribution of function of random variables (transformations method)

Therom: suppose Xis a continuous 7, u with b, d, f f; (x). Set x = {x,f;,(x) > o}.Let
(i) » = g(x) difine a d.f transformation of x anto x

(ii) the derivative of x = g"1(x) w.7.t g4 iscontinous and non-zero for 4 € x, where g~ 1(g¢) is the
inverse for of ¢ (x) i,e g~ 1(g) isthat x for which g(x) = ¢

Theny = g(x) isacont. r,u with b, d, f.

d
£@) = L@ @) 1297 @)
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Therom : let x; and x; be jointly continous r.u.s with b, d, f fi, x,(x1,x2). Setx =
{(x1, x2): f((xq,x3) > 0}Assumu that
(g1, = ¢1(x1, x2) and ¢,, = g, (X1, x,) defines i:i transformation of x onto x.
(i) The first partical of derivatives of x; = g; ' (¢14,) and x, = g; ' (¢,141) are continous over x.

(iii) The jacebian of transformation is non-zero for (y¢;41)ex.Then the joint b, d, f of y; =
@, (x1,x3)and y, = g, (x4, x,)is given by

Yy, @1, %2) = [X12,{97 (%1, 42)92 " (%1, %2} i

Where

chi chl
XY; XY,
OCXZ OCXZ
X Y1 XY,

I =

X?- distribution

Definition : A continous 7, u, x is said to have the X?- distribution on n degrees of freedom if its b, d, f is
given by

flx) =————— 3
X 2

x<o

I
)

The m, g, f of xis given by

M, (t) = Eet™™

= ;fmx%—l eX(1-21)/2ax
xn/zl(n/z) R

1 1(™/,)

= x”/zl(n/z) (1 —22t) n/2

= (1-2b)™/?
From this we can earily show that
E(X) =nand v(x) = 2n

Forn € 2the b, d, f of x?(n) steadily dencress as x iscrese while forn > 2 there is a unigne maximum
atx=n-—2

Theorom : Let x;, X, ... ..... X, be n independent standand normalr,v,si.e x;~N(0,1),i =1,..n Then

y = %xlz has a X?- distribution on n,d, f.
Proof: Let X be N(o,1) them, g, f of x? is given by
M., = E(et™?)

? _ x2/2dyx

1 J'w
— ptx
VZT[ —o00

2 _ x2(1-26)/2

1 joo
_ ot*
V2T[ —o0
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__ Va1
- JT-20)Vor

=(1-2t)7/2

Which show that x?~x2(1) Then, the m, g, f of y = X" x? is given by
My, (8) = [Mx, (O] = (1 — 2t)™™/2
Which shows that y~x2(n)

Therom: Let y4,¥5 .... ¥ be indepent r,u, s with X?- distribution on n, .......n, degrees of freedom
resp .

Then z = Zf& Yi~x2 (g + npt+..4+nyp)
Proof :them, g, f Z

M;(1) = Ee'?

#
= Eet z Y,
7
#
i=1

- (1 _ Zt)—(nl++n&)/2

Which about that y~x2(n; + -+ + ny)

—1)2
Crollanj : Let (x;, .....x,)be a random simple from a Normal distributuion N (u, 6).Then Y1~ (x‘J—ZM) has
x? distributionon n,d, f.
Therom: Let (x;, ..... X, )be a random simple from a Normal distributuion N (i, o) Let X = Y./ x; /n

1 _ . —i)s? C
And s? = EZ?(xi — %)? be the sample mean and sample variance. Then % has x? distribution on

(n—1i)d,f.

Therom: For large n, V2x2 can be shown to be approximately normally distributred with mean v2n — 1
and st-dearation unity.

Therom: Assume that y has distribution function Fy which satifies some regularity conditions ad which
has r-unknown parameters 8,6, .... 8, and that (v;,..y,) is a random sample of y.Let 8,, 8, be the

m. ¥, e of 8's .Suppose the sample is distribution in £ non-orerlapping intervals {I]}

where [; = {y,: aj_; <y< aj_i},j =1,..#(a, = —oa, = cand. Let x;, ..... X, be the number of
sample values falling in these inervals, respectively if me define

p, = P{Yfallsinl}},j = 1,.. £
&~ . T . _wp  (xj-np)? .
Where 6,, 8, replace 6;, 0, in F, ,then the distribution of the statistics z = ijl TLerger is
J

appoximately distributed as x?on £ —r — i d, f as n gets

Students t-distribution

Definintion : A Continous 7, u, x is said to have the t-distribution on n, d, f ifits p, d, f is given by



82

n+1
£ [(n2 ) 12 nFir TP <X <@
() Vam 1 + 257
Remark : Forn = ithe p,d, f
() =~ <x<
= — —00 (0 0]
flx i+ x%’ X

Which shows that it is a couchy distribution We will therefore, assume that n > i

Remark:the b, d, f of t-distribution is symmctric about again. For large n the t-distribution tends to
Normal distribution. For small n hawever t-distribution deviates considerally from the normal in fact if

T~t(n)and Z"'N(O, l)
P{[T] > t,} > P{[Z] > t,}
Moments : Since the distribution a symmetrial about origin u,,- +1 =20

For 2r<n

Uz = E(er)

_Zﬂnzl)fw X
VA (1 2n)nea®

n 2

X

Therom : Let x~N(0,1) and y~x?(n) and Let xand y be independent .Then U = N
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